1. Write a template function that increments every element in an array. The function should work on arrays of any data type that support the increment function.

2. Write a template function that finds the smallest element in each of two different arrays (i.e., the smallest item for the first array and the smallest item for the second array). The two arrays can be of different data types.

3. A stack is an abstract data type that mimics physical stacks, such as a stack of papers or a stack of dishes. The operations defined on a stack are push(newItem), which places a newItem on the top of the stack. And pop() which returns the item that is on top of the stack. So a stack of integers would work as shown in the following example:

myStack.push(1);

myStack.push(2);

myStack.push(3)

int top = myStack.pop();

cout << top << endl; // prints 3

 myStack.push(4);

 top = myStack.pop();

 cout << top << endl; // prints 4

 cout << myStack.pop() << endl; // prints 2

 cout << myStack.pop() << endl; // prints 1

Write a Stack template class that can store objects of any type that has a copy constructor. Show how you would declare myStack.

4. Explain what each const does.

// const at the end means that the function can be invoked on const objects

Car::getMake(const char* make const) const ;

Car::setMake(const char* newMake);

const Car myConstCar(“ford”);

Car myNonconstCar(“mazda”);

myConstCar.getMake(); // would be error if getMake was not a const function

myNonconstCar.getMake(); // I can always do this regardless of the constness of the function.

4.) Write a function that returns a pointer to a copy of a string that was passed in. The copy should be placed in dynamically allocated memory.

Answer:

char* copyString(const char* orig)

{

 // Find the length of the original string.

 int length = strlen(orig);

 // Allocate memory to hold the copy (including null terminator).

 char* copy = new char[length+1];

 // Copy the original to the new memory.

 strcpy(copy, orig);

 // Return a pointer to the copy.

 return copy;

}

5.) Write statements to deallocate the memory allocated in the following two statements.

char* x = new char[MAX_STRING_SIZE];

Student* newStudent = new Student;

Answer: If [] are used with new, they must be used with delete. If no [] are used with new, [] must not be used with delete.

delete [] x;

delete newStudent

6.) Write a class called Person that contains:

a. The person’s name

b. The person’s address

c. The person’s telephone number

 Write the class such that the name and address can be read, but not written, by nonmember functions. Write the class such that the telephone number may be written but not read. Implement the name using a c-style null terminated string. Implement the address using the string class from the standard library. Place the class in a namespace called cs142

// The following is inside Person.h

#ifndef CS142_PERSON_H

#define CS142_PERSON_H

#include <string>

#include <iostream>

using namespace std;

namespace cs142

{

class Person

{

 public:

 //Constructor

 Person(const char* name, const string& address);

 // Copy constructor

 Person(const Person& orig);

 // Destructor

 virtual ~Person();

 Person& operator=(const Person& rhs);

 bool operator<(const Person& rhs) const;

 void read(istream& in);

 void write(ostream& out) const;

 protected:

 enum {DEFAULT_PHONE_NUMBER=5551212};

 char* name_;

 string address_;

 int phone_;

};

}

#endif

// Inside Person.cpp

namespace cs142

{

 Person::Person(const char* name, const string& address) :

 address_(address), phone_(DEFAULT_PHONE_NUMBER)

 {

 // Find the length of the original string.

 int length = strlen(name);

 // Allocate memory to hold the copy (including null terminator).

 name_ = new char[length+1];

 // Copy the original to the new memory.

 strcpy(name_, name);

 }

 // Copy constructor

 Person::Person(const Person& orig) :

 address_(orig.address_), phone_(orig.phone_)

 {

 // Find the length of the original string.

 int length = strlen(orig.name_);

 // Allocate memory to hold the copy (including null terminator).

 name_ = new char[length+1];

 // Copy the original to the new memory.

 strcpy(name_, orig.name_);

 }

 // Destructor

 Person::~Person()

 {

 delete [] name_;

 }

 // Assignment operator

 Person& operator=(const Person& rhs)

 {

 // Check for self assignment

 if (this != &rhs)

 {

 // Deallocate the current name

 delete [] name_;

 // Find the length of the rhs name.

 int length = strlen(rhs.name_);

 // Allocate memory to hold the copy (including null terminator).

 name_ = new char[length+1];

 // Copy the original to the new memory.

 strcpy(name_, rhs.name_);

 // Copy the address

 address_ = rhs.address_;

 // Copy the phone number;

 phone_ = rhs.phone_;

 }

 return *this;

 }

 bool Person::operator<(const Person& rhs) const

 {

 return (strcmp(name_, rhs.name_) < 0);

 }

 void Person::read(istream& in)

 {

 char* inputBuffer[MAX_NAME_LENGTH];

 // Read the name

 in >> inputBuffer;

 // Read the address

 in >> addresss_;

 // Read the phone number

 in >> phone_;

 into length = strlen (inputBuffer);

 name_ = new char[length + 1];

 strcpy(name_, inputBuffer);

 }

 void Person::write(ostream& out) const

 {

 out << name_ << endl;

 out << address_ << endl;

 out << phone_ << endl;

 }

 ostream& operator<<(ostream& out, const Person& outPerson)

 {

 outPerson.write(out);

 return out;

 }

 ostream& operator>>(istream& in, const Person& inPerson)

 {

 inPerson.read(in);

 return in;

 }

}

7.) Write the assignment operator for the Person class.

8.) Write the < operator for the Person class so that instances of the Person class can be sorted in alphabetical order.

9.) Write operators to read and write instances of the Person class.

10.) Write a constructor for the Person class that takes the name and address as parameters. Set the telephone number to a default value (555-1212).

11.) Write a destructor for the Person class.

12.) Write a copy constructor for the Person class.

13.) Under what circumstances will a copy constructor be invoked?

a. When a class is passed as an argument by value

b. When a class is returned from a function by value

c. When a class is constructed using an instance of the same class as a parameter

i. Car myCar(yourCar); // Copy constructor creates myCar from yourCar

ii. Car myCar = youCar; // Copy constructor creates myCar from your car

14.) How many times will the copy constructor for the string class be invoked in the following program? At what point(s) in the program?

string concat(string& a, string b)

{

 string c=a; // Invokes the copy constructor to initialize c=a

 string temp = b; // Invokes the copy constructor to initialize temp=b

 c = a; // uses assignment operator, not copy constructor

 c = a + b; // uses assignment operator, not copy constructor

 return c; // copy constructor used to return a copy of c.

}

 int main()

 {

 string x = “asdff”;

 string y;

 y = “zyz”;

 string z = concat(x, y); // Invokes copy constructor to make copy of y to be passed

 // by value. Invokes copy constructor to initialize z to

 // result of concat.

 }

15.) Suppose that you wanted to write the following classes.

Student

 Name

 Address

 Phone number

 Grade

Professor

Name

Address

Phone number

Tenured (true/false)

College

Name

Address

Phone number

Accredited (true/false)

Animal

Name

Address

Phone number

Species

How might you utilize the person class to implement these classes?

Answer: Always remember that public inheritance means “is a.” So while it makes sense to say that a Student is a Person and a Professor is a Person, it does not make sense to say a College is a Person or a Animal is a Person. So Student and Professor can inherit from Person, but not College or Animal.

16.) When is it appropriate to use virtual functions? What is the difference between virtual and pure virtual? What is an Abstract Base Class?

 Answer: Use virtual functions anytime it is reasonable to believe that the class you are writing might be used as a base class and a subclass would like to redefine the function. A virtual function describes an interface and provides a default implementation. A pure virtual function describes an interface but does not provide a default implementation. An Abstract Base Class is a class that contains at least one pure virtual function.
17.) Give an example of the use of static, dynamic, reinterpret and const cast operators. Explain what each does and describe a situation in which it is needed.

18.) Under what circumstances would you use a virtual, pure virtual, or nonvirtual member function? How are virtual and nonvirtual destructors different?

a. Virtual – can override it and it has a default implementation.

b. Pure Virtual (=0) – must override to have instances of the subclass.

c. Nonvirtual – should not override.

19.) Describe each of the following:

a. A static member function. Explain how you might invoke a static member function from a main routine.

Person::someStaticFunction(abc);

somePerson.someFunction(abc);

b. A static data member. How is a static data member different than a non-static data member?

20.) What is polymorphism?

Polymorphism is a function’s ability to call different functions based on the type of object being referenced.

For example,

 void someFunction(Car* ptr)

{

 ptr->draw();

}

// Enums are always implemented as integers.

enum Color {RED=4654, GREEN, BLUE};
Color myColor = RED;

class MyClass

{

 enum {DAYS_PER_YEAR=365};

 float daysThisYear[DAYS_PER_YEAR];

};

21.) What is the purpose of an iterator?
22.) Use an iterator to print all elements in list<int> myInts.

 for(list<int>::iterator it = myInts.begin(); it != myInts.end(); ++it)

 {

 cout << *it << endl;
 }

 23.) Briefly explain how a linked-list is implemented.
