CS142 Sample Test Questions for Exam #1

Functions

2.) Write a function that takes a character pointer as input, and changes all the vowels in the string at that address to the letter 'x.'

Answer:

void changeVowelsToX (char *ptr)

{

 // For each character in the string (until we get to the null character)

 while(*ptr != 0)

 {

 // If the character is a vowel

 switch(*ptr)

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 // Change the vowel to an 'x'

 *ptr = 'x';

 break;

 }

 // Increment the address to point to the next character.

 ++ptr;

 }

}

3.) Write a function that takes three floats as input, and returns the largest of the three

Answer:

float largestOfThree(float a, float b, float c)

{

 float biggest;

 // Find the larger of a and b

 if (a > b)

 {

 // a is larger than b -- find the larger of a and c

 if (a > c)

 biggest = a;

 else

 biggest = c;

 }

 else

 {

 // b is larger than a -- find the larger of b and c

 if (b > c)

 biggest = b;

 else

 biggest = c;

 }

 return biggest;

}

4.) Write a function that takes a character pointer as input and prints the string backwards.

Answer:

void talkBackwards(char* ptr)

{

 char* start = ptr;

 // Advance ptr to the end of the string.

 while (*ptr != 0)

 {

 ++ptr;

 }

 // Move ptr back to the last printable character

 --ptr;

 // Print each character until ptr gets back to its original value.

 while(ptr != start)

 {

 cout << *ptr;

 --ptr;

 }

 cout << *ptr; << endl; // print the last character and a newline

 }

5.) Write a function that takes an integer as input and doubles the value of the integer. The function does not return a value. It actually changes the value of the input variable.

Answer:

void doubleInput(int& input)

{

 input = input * 2;

}

Call by value and call by reference

5.) What does this program print?

void mystery(float& a2, float b2)

{

 a2 = a2+ b2;

 b2 = b2 * 2;

 cout << a2 << endl; // cout #1

 cout << b2 << endl; // cout #2

}

int main()

{

 float x = 10;

 float y = 20;

 float a = 100;

 mystery(x, y);

 cout << a << endl; // cout #3

 cout << x << endl; // cout #4

 cout << y << endl; // cout #5

}

Answer:

cout #1 _________30_______________

cout #2__________40_______________

cout #3_________100________________

cout #4_________ 30________________

cout #5_________20_______________

6.) Draw the state of the memory model after the program in question 5 has executed.

Answer:

	Address
	Value
	Data Type
	Name

	100
	30
	float
	x (main), a (mystery)

	101
	20
	float
	y (main)

	102
	100
	float
	a (main)

	103
	20
	float
	b (mystery)

	
	
	
	

	
	
	
	

Pointers

7.) What does the "*" mean when it is appended to a data type, such as in the following statement?

char* x;

Answer:

It means that variables of this data type store the address of a location in memory.

8.) What does the "*" mean when it appears in front of a pointer variable?

Without the "*" a pointer variable refers to an address. A pointer variable that is preceded by a "*" refers to the value with the address that is stored in t. We refer to this as the dereference operation. We read the "*" as "the value with address."

9.) What does the & mean when it appears before a variable name in the body of the program?

Answer:

It means take the address of the associated variable.

10.) What does the & mean when it appears in a function prototype?

Answer:

It means that the associated variable is passed by reference. When a variable is passed by reference it does not have any new memory allocated for it in the function. Instead, a variable that is passed by reference is simply an alias for the variable in the calling program. Therefore, any change made to the variable in the function will affect the value of the variable in the call.

11.) How do we know when a function parameter is passed by value?

Answer:

It doesn't have a "&" sign in front of the parameter name in the function prototype. When a variable is passed by value, new memory is allocated for the variable in the function. The value of the variable in the call is copied to the new memory. Because the function uses a copy of the variable in the calling routine, the variable in the calling routine is not affected by changes made to the variable in the function.

12.) Consider the following program.

int main()

{

 const int MAX_DATA_SIZE = 2;

 char fall[] = "fall";

 float spring[MAX_DATA_SIZE];

 char* fallPtr = fall;

 float* springPtr = spring;

 int x = 20;

 int* xptr = &x;

}

Fill in the table below to show how these variables might appear in our memory model.

Answer:

	Address
	Value
	Data Type
	Name

	100
	2
	const int
	MAX_DATA_SIZE

	101
	'f'
	char
	fall[0]

	102
	'a'
	char
	fall[1]

	103
	'l'
	char
	fall[2]

	104
	'l'
	char
	fall[3]

	105
	0
	char
	fall[4]

	106
	uninitialized
	float
	spring[0]

	107
	uninitialized
	float
	spring[1]

	108
	101
	char*
	fallPtr

	109
	106
	float*
	springPtr

	110
	20
	int
	x

	111
	110
	int*
	xptr

	
	
	
	

	
	
	
	

	
	
	
	

13.) What will the following lines print?

cout << fall[0] << endl; ___________f________________

cout << fall << endl; ___________fall________________

cout << fallPtr << endl; ___________fall________________

cout << xptr << endl; ___________110________________

cout << x << endl; ____________20_______________

cout << xptr << endl; ___________110_________________

cout <<*xptr << endl; ____________20_______________

cout << &xptr << endl; ___________111_________________

cout << *(fall+1) << endl; ___________a_________________

cout << fall[1] << endl; ___________a_________________

cout << &x << endl; __________110__________________

Dynamic memory allocation

14.) Write a function that returns a pointer to a copy of a string that was passed in. The copy should be placed in dynamically allocated memory.

Answer:

char* allocateCopy(char* string)

{

 // find the length of the input string

 char* ptr = string;

 int length = 0;

 while(*ptr != 0)

 {

 ++ptr;

 ++length;

 }

 // Allocate the memory for the copy (including null terminator)

 char* copy = new char[length+1];

 // Make a copy so we can remember where the string starts.

 char* copyPtr = copy;

 // Copy the string to the newly allocated memory

 ptr = string;

 while(*ptr != 0)

 {

 *copyPtr = *ptr;

 ++ptr;

 ++copyPtr;

 }

 *copyPtr = 0; // Add null terminator to the copy

 return copy; // return address of first element in the copy

}

14.) Write statements to deallocate the memory allocated in the following two statements.

char* x = new char[MAX_STRING_SIZE];

Student* newStudent = new Student;

Answer:

delete [] x;

delete newStudent;

Classes

Write a class to hold an address (streetName, number, city, and state. No data members should be accessible from outside the class. Write a getCity member function and a setCity member function. Both functions should be accessible from outside the class. Write a default constructor, a copy constructor, and a constructor that takes a city, state, street name and street number as arguments. Write a destructor. Write an assignment operator and an equality operator(Addresses are equal when all the fields are identical)

Write a main routine that creates two instances of your class and sets the city for each..

15.) Consider the following program:

#include “Address.h”

Address function(Address someAddress)

{

 return someAddress;

}

int main()

{

 Address myAddress(“Lynchburg”, “VA”, “Lakeside Drive”, 1501); // Line #1

 Address yourAddress = myAddress; // Line #2

 Address collegeAddress(myAddress); // Line #3

 collegeAddress = yourAddress; // Line #4

 yourAddress.setCity(“Bedford”); // Line #5

 cout << collegeAddress << endl; // Line #6

 Address newAddress = function(myAddress); // Line #7

}

List all member functions that are invoked from this main function. Indicate the line number in the program that causes the invocation.

