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Hydrodynamic theory of photon drag
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We derive and evaluate a hydrodynamic theory of photon-drag effects in simple metals. Considering a
jellium surface obliquely illuminated by monochromatic light, we calculate both the steady surface-parallel
current and the emf induced along the surface normal. The sizes of these effects are estimated with a variety
of approaches, ranging from momentum-balance arguments, through sum rules, to detailed microscopic cal-
culations using a hydrodynamic description of the electrons’ dynamics. Comparisons between the sometimes
different results help clarify the physical origin of the phenomena, in particular, the extent to which effects are
surface sensitive. We also outline a calculational approach that should allow a tractable incorporation of
guantum-mechanical dynamid$§0163-18207)04247-1

I. INTRODUCTION conductors. See Ref. 7 for a brief review and a long list of
references. Although most of this work has been buil{ibn
In this paper we consider a variety of ways to calculatetheoretical or interpreted with(if experimental interband
photon-drag effects in simple metals. Our basic scheme is tiansitions, a model that only allows intraband transitions
adapt the hydrodynamic approach to second-harmoni@lso produces photon-drag effects, and allows a tractable
generatiohto treat the related problem of photon drag. If the @nalysis of surface sensitivity, which is a particular interest
light incident on the system is at frequen@yits time varia- ~ fOr us. We describe the electrons’ dynamics by using a phe-
tion can be represented by egswhich also sets the varia- nNomenological hydrodynamic equation of motion. As with

tion of first-order response quantities. Second-order respongee jellium model, this provides a _crude but tractable descrip-
tion, and one that can be readily compared with second-

quantities would then vary qualitatively as é@st)=3[1 harmonic calculations.

+cos(2t)]. The cos(at) term describes the second- e pegin in Sec. Il with formal arguments that avoid
harmonic response, while the constant term describes th@icroscopic details. Similar arguments have been used by
photon-drag response. From this point of view second harothers before, in particular by Gurevich and coworkéers,
monic and photon drag should be similar in regard to theirand by Thellund! The predictions of these arguments set
physical origin and surface sensitivity. However, as we shovthe scale for comparisons with more involved treatments. We
here, detailed arguments and computations for the tware able to show that in some special cases these arguments
classes of response can be quite different. give the exact results for our model even though they fail in

Many of these differences arise from how the secondgeneral. In Sec. Il we develop the full microscopic solution.
order response reveals itself. In second-harmonic generatiomhis involves not only expanding the equation of motion in a
and more generally sum-frequency generafithe observ- suitable series of orders, but also choosing the additional
able effect is radiation, whose intensity varies with thePoundary condition$ABC's) that are needed to obtain com-
square of the second-order response. In contrast, with photdiete solutions. Then a sequence of model calculations is
drag one is concerned with dc effects, either currents oflescribed which illustrates the range of behaviors that are
emf's that have been induced in the conductor. These ar@ossible. By varying conditions near the surface, we identify
direcﬂy proportiona] to the second-order response, and réNh|Ch partS of the calculation are surface sensitive. Fina”y,
quire either dc transport theory or static screening for theitith an eye on future work, we show how our complete
description, rather than radiation theory. Thus one ends ufolution can be essentially reproduced by a simpler proce-
calculating quite different physical observables, which lead$lure which avoids retardatiof@nd solving the full set of
to different approximations, notation, language, etc. One oMaxwell's equationsin the numerical work.
our goals in this work is to stress, where possible, common
featur_es between second—harmoni_c and photon-drag effects Il MOMENTUM BALANCE ARGUMENTS
by using a model that can be applied to both.

Our model is jellium, which is reasonable for simple met- The following derivations are not rigorous, but instead
als, and is where most first-principles calculations of secondsuggestive of what to expect when a laser beam illuminates
harmonic generation have been ddngHowever, it strictly  the flat surface of a thick conductor in which only intraband
forbids interband transitions, which is the mechanism comiransitions are importar(i.e., semi-infinite jelliun. Let the
monly used to describe photon drag. Most of this work hasangle of incidence of the wide light beam Ibe We ignore
also been focused on semiconductors; see the book ke effects due to the edges of the beam. The polarization of
Grinberd for a review of the early efforts in bulk materials. the light is not relevant for the general arguments, but is
Later, considerable effort was also made on semiconductdmportant for quantitative calculations. The incident Poyn-
guantum-well systems, and only more recently on metalliding flux along the beam direction is call&] and the mono-

0163-1829/97/5@3)/1542110)/$10.00 56 15421 © 1997 The American Physical Society



15422 JOHN ERIC GOFF AND W. L. SCHAICH 56

chromatic light is assumed to have frequenty S ® S
First consider the light “pressure’(actually a shear f.=|;—cos [(1—R)+2R](ﬁ30059>=300529(14' R),
stres$ on the surface due to momentum transfer parallel to ()

the surface. The flux of photons striking the surface is

(S/t.w)cosh. If a photon is reflected, it transfers no momen- yhere the two contributions in the square brackets are due to
tum parallel to the surface; while, if it is absorbed, a momenypsorbed and reflected photons, respectielfwe imagine

tum (hw/c)sin 6 is given to the metal. Hence the force per an open circuit configuration, this light pressure causes a
unit area parallel to the surface is distortion of the electron charge density, which in turn in-
duces an electric field whose force on the electrons counters
the light pressure. We write

S w S .
— cosﬁ)(l—R)(ﬁ— sma) =c sinf cos¥(1—R),

fH: hw (o
()

flz—f dx neE,g=npeAs, (5)
whereR is the reflection coefficient.

We now argue that under steady-state conditions this rate . :
of transfer of momentum from the light to the electrons neayvhereAS IS th? |_nduced emf between below and above the
the surface must be balanced by resistive drag forcesc’.urface' Combining Eqg¢4) and(5),

Crudely representing these with a constant relaxation-time
approximation, we write (S)

e<A€>=ﬁCO
b
nmoy _ m m
fi= | dx——=——| dx(nev)=——| dx J(x).
b b

T

$0(1+R)

2) =<:—p> fiw coSO(1+R), (6)
b
Heren is the density of electrons, ang is the component of . ) ) )
their drift velocity parallel to the surface. The variatleuns ~ Wheren, is the density of photons in the incident beam. One
along the surface normal, and the metal liesxin0. Each ~ Way to view this result is as a light-induced change in the
electron has mass>0 and charge<0. The physical pic- work function. AIterpativer if one can arrange for a current
ture is that the electrons gain momentum by absorbing lightto flow in part alongk through the region wherg;,4# 0 (see
and lose momentum by resistive scattering, quickly settlingRef. 13, then(A¢&) represents the light-induced emf in such
into a steady drift parallel to the surface. Although a currenta circuit.
is produced, no charge build-up occurs. The density of the Our results for the parallel and perpendicular response
parallel currentJ;, varies with depthx, and vanishes be- [Egs.(3) and (6), respectively are appealing for their sim-
yond the penetration depth of the light fields and before theplicity, but suspect for the same reason. We assumed for the
back side of the sample is reached. Our simple argumerglectrons that their equilibrium density and scattering rate are
only produces the integral a overx. constant right up to the sharp edge of the surface. We have
Combining Eqgs(1) and(2), we can express the result for ignored the finite width of the light beam and the finite
the time-averaged current per unit length flowing parallel toheight of the electron surface barrier. Allowance for electron
the surface in several ways: flow out of the illuminated region or out of the metal will
complicate the analysis. The key idea of balancing rates of
e momentum transfer is not always valid, at least in the simple
f dx<J|>=(—) c7p(S)sing cosH(1—R) form we have applied it. Since free electrons cannot absorb
mc” photons, appropriate third bodies as sources of momentum
should be considered. Yet in our argument the spatial inho-
(S)\ . mogeneity of the surface potential and/or of the scattering
:Uo(m)s'ne co(1-R). (3 field responsible for &/ were ignored.
To correct all these approximations is too difficult at
Here angular brackets denote a time average, and with tHresent. However, with the aid of the hydrodynamic equation
free-electron mass|€|/mc®)=1.96 uA/W. Also, oy, is the of motion, the consequences of several can be usefully ex-
dc conductivity, o= npe?r,/m, while 1hyec is the free- amined. For the rest of this section we will outline an analy-
electron Hall coefficient, both written in terms of the bulk Sis which clarifies if and when the simple momentum-
electron density,,. It is remarkable that although the cur- balance results, Eq¢3) and(6), are reliable. Our method is
rent is a nonlinear response, one needs only linear-respon§@sed on combining moments of the hydrodynamic equation
properties to evaluate E(B), which allows simple estimates With Maxwell's equations to derive formal resultsum
of the magnitude of the photon-drag currént. rules, which contain Eqs(3) and (6) plus correction terms.
Before considering the limitations of the above derivation,In some cases we can prove that the correction terms are
let us briefly consider the response along the surface norméfientically zero, while, in others, microscopic model calcu-
for which the argument changes in several ways. The prolations are needed to quantify the importance of the correc-
jected incident flux is still §/%w)cosé, but now even re- tONS.
flected photons transfer momentum to the metal. The light The hydrodynamic model we use is defined by the follow-
pressure normal to the surface is ing equation of motion for the electron velocity fielgx,t):
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oo 1. ] 1. 1. (15) are second-order, steady-state values. Although time in-
—+(v- V)u— E+ —v>< B|— —Vp— v, (7) dependent, they are, in general, position dependent.
Jt mn We are interested in the amougatt second-orderof cur-

whereE andB are electric and magnetic fields, respectively, €Nt flowing parallel to the surface and the emf developed

andp is the pressure, which we assume depends only on thelong the surface normal. These are defined/ (X J,)

densityn throughp=¢n*? with { a constant. Our approach and — fdx(x-E,), respectively, wher& is a unit vector in

to (approximately solving Eq.(7) is based on expanding all the surface plane, am is a unit vector along the surface

variables there in a series of orders. normal. The integrands for these quantities can be discerned

on the left-hand side of Eq15), while on the right-hand side

A=RotArthAgtee, ®  are many derivative termg th)at can be integrgted exactly. For

with ANJ,E’élp, orn and generating a sequence of equa_the surface parallel current we f|nd,71f—> Th independent of

tions of fixed ordet. Since theA, terms are equilibrium X,

values, we assume that bo}b and éo vanish. In this section

we seek analogs of Eg3) and(6), rather than a full micro- m dx(X 12> 2<x K(O) x) <x o) x) (16)
scopic solution. To this end introduce the charge density ETb
p=ne and the current density=nev, and use the equation We have also used a symmetry that, neglecting beam and
of continuity sample(side edge effects, implies that,,(E,), andV(p,)
ip - - all poin.t alqngi. Fpr the emf alpng the surface normal in an
E+V~j =0 9 open circuit, we find, ifpg— p,, independent ok,
to rewrite the second-order version of Ed@) as —be dx(X-E,)=2(X- IZ(O)-3()—<>A<~?(O)~>A<>+<p2(0)).
Y eGP (51 Ny w
The reason the term witk, does not contribute is because
el - 1 . . e. the zeroth-order form of Eq7) hasEqyxV po, which van-
m pE+ c JXB 2_ EVF’Z- (10) ishes here sincp is presumed constant. For both E(¢ES)

and(17) we have assumed that all quantities become negli-
The second-order contributions to the terms in the squargible deep in the bulk.
brackets are Equationg16) and(17) are close to Eqg3) and(6) if we

note thatdj~X- j, andEjpq~X- E,. It remains to evaluate at

x=0 the terms on the right-hand side of E¢6) and(17).

We claim that the relevant elements of the kinetic-energy
11 density tensor vanish because one requffeél(O):O to
where the pieces within parentheses in Erfl) can be ex- €nsure that the first-order induced charge density at the sur-
actly rewritted? in terms of the light's momentum density face be nonsingular. The contributions of the stress tensor
elements are found from first-order field components. Since
in the microscopic solution of the hydrodynamic model one
also requires that all first-order fields be continuous through
x=0, the evaluation oT is most easily done on the vacuum
side of x=0, where only incident and reflected transverse
waves are present. Call the projection of the incident light
wave vector in the surface plafg and define a set of Car-

(13  tesian axes by the triplet of unit vectors,Q,t=xxQ).
Thusx andQ lie in the plane of incidence, artdis orthogo-

L1l . .1 L
PE"‘EJXB :POE2+P2E0+(P151+511X51

2

1 . o
= R(Elx B1), (12
and the Maxwell stress tensor

T= E[Elé —3 X(E;-Ey)+ByB; -

NI~
=t
(o h}
fie
(v p}
fie
SN
| S—

as nal to it. For eithers- or p-polarized light, we find
p1Eq+ 1Jl>< Bl——(;—?w* T. (14) (Tx(0))=0, (18)
ggtk;?;ituting back into Eq10) and taking a time average, we (Tox(0))=— ? cod sind(1—R), (19
m . - - R (S)
—o{02) = polE2)=(p2)Eo—2V-(K)+ V(T) = V(p2), <Txx(0)>:_TCO§0(1+R)y (20)

19 whereR is the appropriate reflection coefficient. For a mix-
where K—Zmnovlvl The time average over the period ture of s- and p-polarized light, there are no cross-terms
27l w of the light has eliminated the second-harmonic partdetween the different polarizations, and one simply replaces
of Eq. (10) and all time derivatives. The quantities in Eq. R with @,R®®+ aR®), wherea,+ as=1, with ap(as) the
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FIG. 1. Dimensionless photon-drag current parallel to the sur- F|G. 2. Dimensionless photon-drag emf along the surface nor-
face vs frequency for different angles of incidence in a one-stepnal vs frequency for different angles of incidence in a one-step
model. Results fop-polarized light lie everywhere above those for model. The incident light is polarized. The thick curves are based
s-polarized light. Herd’;=0, and the momentum-balance predic- on the full evaluation, Eq(21), while the thin curves are from the
tion is exact. simple momentum-balance res().

time-averaged fraction of the incident beam’s flux polarizedy,irent de<Q~ j}) tends asr,— = to a nonzero, finite re-

in (orthogonal t0 the plane of incidence. For circularly po- sult over the frequency range whererilis necessary for
larized lightap=as=3. optical absorption. This range extends updg/cosé for
Thus for the current parallel to the surface we have, fromincidents waves, but only up ta,, for p waves. The upper-
Egs.(16), (18), and(19), exactly reproduced Ed3). How-  frequency limit is set by the threshold for plasmon creation.
ever, for the emf along the surface normal the implication of The similarity betweers andp waves evident in Fig. 1 is
Egs.(17) and(20) is that a correction term is missing from |ost when we examine the emf induced along the surface

Eq. (6). One should write normal. Results are shown for the one-step model in Figs. 2
(s (5(0)) and 3 for incidents and p waves, respectively. In both fig-
e(AE) = = co20(1+R) + pi] . 1) ures the dimensionless quantity plotted is defined by
b b
. (S)
To quantify the size of this correction, we need to go beyond —ej dx(x- E2>=Fx<@ : (23

the formal manipulations used so far and carry through a full
microscopic calculation to findp,(x)). This is a consider- If the momentum balance result were exakcy, would be
able effort and is described in Sec. Ill. Here we want tocosd (1+R). This is nearly true for the wave case, but is
illustrate the numerical results before giving the algebraic
detail.

The model system we evaluate has a bulk density de
scribed byr=2.07, the value appropriate for Al. Results for
different bulk densities, say;~4 for Na, give qualitatively
similar plots. The important energy scale is set by the bulk 15[
plasmon, which for Al has the value éfw,=15.8 eV. The
scattering timer, is set atw,7,=10. In Fig. 1, we show the
spectral dependence of the surface-parallel current in a ont
step model, i.e., a model whepg and 7 are each constant in
the jellium. The dimensionless quantity plotted is defined by

2.0

*1.0

@) : (22

nyec

J dX(Q'f2>:FQUo

and since the momentum-balance result is exact for a one
step model of the surface-parallel current, here %% 10 20 3.0
I'g=sin#cosé (1—R). The structure in the plots is simply o/,

due to the drop iR from nearly 1 to nearly 0, as the fre-

quency moves through the threshold for transparency of FiG. 3. Same as Fig2), except here the incident light is
transverse waves in bulk af,/cos6. The jump inl'g sharp-  polarized. The results fo#=0 are omitted since they are the same
ens asr, is increased. We remark that the total integratedas those in Fig. 2. The thin solid lines are based on(E§).
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CIearIy wrong fOfp waves. For the latter case the last term in components ofl’ all components 0511 and normal deriva-
Eqg. (21) is a significant correction, and completely changes[ives of any component dil and él), they in general only

th_e spectral ((jjepe_lnd_enc%. in Sec.dlll we %Iel\r:e fuhrther w;)toht_h uppress singularities, not discontinuities. These limitations
microscopic details in order to understand the physics behind, <o trouble at second-order.

this interesting structure. We will also find that the relatively 11,4 \;seful analog of Eq26) in second-order is EqCS-
simple appearance of tH&s in Figs. 1 and 2 can be consid- )
erably modified if one goes beyond a one-step model of the

metal surface. 9 1\. e . 1. . R
E‘f’; UZZE E2+EleBl _(Ul‘V)Ul
I1l. MICROSCOPIC CALCULATIONS
o _ . . [ 83 1 nf
In this section we derive and evaluate microscopic expres- —V|— == —1. (27
sions for the photon-drag response. Within the hydrody- No 6 no

namic model such calculations are fairly straightforward, soagain, with an eye on Eq(9), we impose at all interfaces

w ncentr n ions of principle and numerical re- _ . . Ao : T .
sjltgo centrate on questions of principle and numerica econtmmty ofx-j, to keepp, nonsingular anc- E, continu-

ous. The remaining ABC at internal interfaces is used to
_ _ suppress the singularities associated with the normal deriva-
A. Basic equations tive of discontinuous quantities. Specifically, we require con-
The formal analysis is quite similar to that developed fortinuity of
second-harmonic generation by Corvi and Schaieh).}®
One begins by expanding E() into a series of orders—see 150>
Eqgs.[CS—4a)—-4(c)]. From the zeroth-order equation, a re- Po

lation betweerE, and the gradient o, is obtainedCS-7:

2
P2— & —) : (28)
0

Note that, if 7 is continuous, Eq.26) implies that the

4 B2 surface-parallel components of are continuous too. Our
Eo= OV_)pO, (24)  second-order ABC's then are equivalent to those of CS. But
wé if 7 is discontinuous at an internal interfagghich CS did

) ) o3 . not allow), the ABC's proposed here are different. In particu-
where wg=4mnee’/m and 5= 5{ng/m. We will choose Ilar, at a discontinuity inr, there is a singularity in the

the parametet so that surface-parallel components of (- V)v,, which implies a
s 3 o S-function contribution to the induced second-order current
Bo=35VE 25 density.

This complication is an unappealing feature of our model

with v the Fermi velocity of a uniform free-electron gas of solution. It would not arise if we did not allow discontinui-

densityng. This allows an accurate description of the bulkties in = andny 78 But if ~ andn, vary smoothly withx,

plasmon dispersioff. Next we use Eq(24) to eliminateEy e Joses the convenient option of matching plane-wave so-
from the higher-order equations of motion. At first order this|ions across various interfaces, and must numerically inte-

leads to Eq(CS-8, grate the equations of motion over all In our opinion this
extra effort is not justified in an initial analysis. It would

(26) seem more appropriate to make such a computational invest-
ment later for a more sophisticated model, one that goes
beyond hydrodynamics to better treat the electrons’ dynam-

For our model calculations we shall assume thagtand  ics with quantum mechanics.

1/7 have a steplike dependence on the surface-normal coor- The hydrodynamic equations we need to solve in regions

dinatex. In order to decide what ABC’s to impose across of constantn, and 7 are, at first ordefEq. (CS-9],

planes whereng and/or 1# have discontinuities, our criteria

are to require that all electromagnetic field components be

continuous and to suppress singularities in other physical

guantities as much as possible. Since we have the freedom to

choose only two ABC's at an internal interfabgheren, is  and, at second-ord¢Eq. (CS-13],

nonzero on both sides of the interfa@nd just one ABC at ’

the external interfacéwith vacuum), our options are rather j+ 1) —ﬂé 2%, 4R 30

limited. To supplement Eq(26), we impose continuity of ot T 7)l2T g e BoVet R, (30

[(B2/po)p1] at each internal interface, which keepsv,

from being singular. Similarly, to keep, nonsingular(and

J 1

—+
ot 7

2
A S 29
praul iy = BoVpi, (29

where the nonlinear driving terms

§(~I§1 continuouy, we require the continuity 0f<~fl from . e . . N Jd 1\(p1-

Eq. (9) at all interfaces. These first-order ABC choices are R=—(01XB) = (J1- V)vg | 2+ = ool

the same as used by CS. Note that, although they ensure the

continuity of several quantitie&@ll components of; and P1 o=

ontnuty quanitiegall comp ! Al (31
B4, X-j,) for another set of quantitieg,, surface-parallel Po
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are bilinear in first-order quantities. These equations are to beg6) differs by a factor of 2 from Eq(CS-19. For the time
solved together with Maxwell’s equations and the equatioraverages needed in E@3), we have the rule
of continuity. Up to this point, our theory applies equally

well to photon drag and second-harmonic generation. We (AL(X,1)B1(X,1)) =R Al (X)B1(X)]. (37)
now break this generality by taking a time average of Eq. i o )
(30) to extract the steady-state terms With these definitions we can outline how one completes

the calculation of fdx(X-],) and —fdx(X-E,). For
1. w - 2 - the surface-parallel current we simply use E(B4)
?<12>_E<E2>_Bov<p2>+<R>’ B2 for the integrand. The only point worth further discus-

sion is how to handle the singularity im(X-R) if 7

2

with is discontinuous. The singular contribution arises from
Loe oo pg (1L B —3 Re[7(x- J1(x))* (9/x)(X-v1(x))], where, from Eq.
<R>:ﬁ(llXBl>_<(Jl'V)vl>+<% (;Jl 3VP1>> (26),
(33 o 22
Note that the last average in E®3) involves different func- X-vy(x)= E)”(-Ii(x)—if(-Q (—Opl(X)) /(—iw
tions from Eq.(CS-14.%° Po
The quantities of interest in photon drag are readily found +1/7). (39

from Egs.(32) and (33). First note that, by symmetry, the

vectors(E,) and V(p,) can only point along the surface
normal. Hence the density of surface parallel current is sim?

The numerator in Eq(38) is continuous, as i$x- j(x))*.
Hence if the jump inr occurs atxy we have, for the integral
over the singularity,

ply

(X-J2)=7(X-R). (34) f dx (X- =——{(x F1(x0))* {—Xél(xa
There is no screening of these components. Alongatters ,
are slightly more complicated. By symmetr{x-j,) can _ix. Bo xo || (39
only depend orx, and by the equation of continuity must in Q po P10 ’

fact be constant. For an open circuit configuration, Wher(?N here
(X-,) vanishes in vacuum, our ABC of continuo(is- j »)

implies then thatx- j,) is identically zero. We are left with x o . 1\t

the (statig screening problem ' :f dx 7 _< —lot _) (40
32 Assuming 7 varies monotonically fromr~ =7(x,) to
P — K3 (X Ez)= ’3_<X R), (39 = (x), we find, asxZ tends tox, from above and be-

0 low, that

where we used Gauss's law to elimindfg). The screening

wave vector that appears herei= w2/ 85, is set by the 1 1 _

choice (25). To change it to the more physically appealing I=A =2 2 In(1-iwn)(, (4D

Thomas-Fermi value would require repIaC|r1@ﬁ—>3vF _ o

Since photon drag mixes behaviors at high and low frequen? where@?=w(w+i/7) andA denotes “discontinuity in.

cies, there is no obvious way with a single choicegjfto R Ff)r 'the em_f along the surface .normal, the mtegre'md

describe both extremes appropriatély. (x-E) is nonsingular, but we must first solve the screening
We use the method of partial waves to produce explicitroblem(35). In any step region of constanty and 7, we

solutionst In each region of constamt, and 7, the general ~€an write, from Eq(33),

solution is written as a linear combination of plane waves.

Their coefficients are determined by matching with the stan- (x-R)= %Re{z Rje*QJX

dard and additional boundary conditions across each plane of ]

discontinuity inng and/or 7. At first order the plane waves

have the common frequenay and surface-parallel wave vectorsQ; are known in terms of first-order quantities. We

vectorQ. They are distinguished by whether they are longi-ihen write in this same step region,

tudinal or transverse, and by whether they propagate parallel

(42

where both complex amplitudeR; and the complex wave

or antiparallel tox. For a real-valued, space- and time- _ . . . e

dependent vectoh(x,t), we write (x-Ez)= 3R —2 0l +N e\ _eT R,
J

Al(iyt): Rd:,&l(x)ei(QXfwt)], (36) (43

. . . Each step region has a pair df. terms, except the bulk,
where Re] ] denotes “real part of” and the complex ampli- \ynere ther , coefficient is set to zero. These coefficients of
tudeAl(x) describes the polarization and propagation direchomogeneous solutions of E(B5) are determined by im-
tion (alongXx) of the wave. Note that the convention in Eq. posing the second-order boundary conditions. Specifically,
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25

we require continuity of botkix- E,) and the time average of
Eq. (28) at each internal interface. We assume that the
second-order electric field vanishes in vacuum; i.e., that th:
total induced charge at second ordetx{p,(x))=0. Our

final ABC is hence thatx-E,(07))=0. This set of con-
straints allows all thex’s to be found, and then one can
trivially integrate Eq.(43). For a one-step model only one

term is needed and we can write the screened second-ord &
field in x>0 as

20 |

15

1.0 |

“ = 4 R
<x-E2>=%Re[—ZZ ;e W —e T ) | (44)
Bo 1 Qj—kp
To check the sum rule resu21), we need . '
,82 1 < 2(0)> 0'Oo.o 1.0 o/ 2.0 3.0
m 0 p b
<p2(0)>:T(<Pz(O)>+§ - ) (45)
Po

FIG. 4. Dimensionless photon-drag emf along the surface nor-
mal vs frequency for different angles of incidence in a double-step
model. The incident light i polarized and only the equilibrium
density is stepped. The thin solid lines are based on(ER).

Here p,(x) is determined solely by the first-order calcula-
tion, and vanishes if the incident beam is psrevave. For
{p»(0)), we apply Gauss's law to E¢43).

B. Model calculations in longitudinal fields that are large and short randed.,

We now return to numerical examples. We will concen-surface sensitive In Fig. 4 we show results faF', for the
trate on double-step models, wherein either the equilibriunstandard®?>double-step model of Al. The selvedge width is
density or the scattering rate is modified from its bulk value4 A, and the equilibrium density there is 0.7 that in bulk. We
over a thin layer of widthw of order A at the surface. We usew,7=10 at allx. Compared to Fig. 3, there is additional
will also mostly show results for incident light thatspo-  structure both below and above,. The common peak for
larized, since these spectra show the richest structure arall angles of incidence ab/w,~0.88 is due to a multipole
greatest surface sensitivity. Results polarized light re- plasmon, which in a hydrodynamic model can be simply
main quite similar to those plotted in Figs. 1 and 2. Theviewed as a plasmon trapped in the selvetfgehe location
physical reason for this distinct behavior is because at firstef this peak is a sensitive function of andng, the selvedge
order s-polarized light does not induce any longitudinal value ofng. We found that its frequency position Iny, cor-
waves in the metal. The spatial variations alongre then relates well with the nonretardedQ=0 multipole
set by transverse wave vectors such as eigenfrequency” It also correlates well with the location of
an extra peak in the reflection coefficieRt”. The latter
peak is a much smaller structuighangingR® by just a few
perceny, but is the only extra structure in the surface-parallel
current compared to Fig. 4. For I', this peak, as well as
those due to scattering resonances ahoye produce much

pT=% (e—sir2o)2, (46)

wherec is the speed of light and is the (local) dielectric

constant,e=1— w3/@? with wy either a bulk or surface
value. For our choices of selvedge width |p;w|<1. The
only nonzero driving term in Eq33) for s waves is from the
Lorentz force. It is slowly varying, and extends far into the
bulk because its associat€) there[see Eq.(42)] is given

larger effects than they do f&®). This emphasizes that the
momentum-balance predictioi®) is not even qualitatively
valid for I'y with p-polarized light.

Next consider the response when one holds the equilib-
rium density constant, but allows the scattering rate to be

by 2 Im(py) <, with Im(') meaning “imaginary part of.” changed near the surface. For the emf along the surface nor-
There is consequently little screening of this driving field mal we find curves fof’, , which are similar to those in Fig.
except neafon the scale o#v) the surface, which has hardly 3. Increasing the scattering rate near the surface broadens the
any effect on its integral over. We have made plots of the structures, while reducing ¢sharpens them. The curves re-
surface-parallel current and emf along the surface normahain significantly different from the momentum-balance
[described byl' of Eq. (22 and I’y of Eq. (23), respec- prediction(6), but these differences are fundamentally due to
tively] for s waves incident on a general double-step modelthe correction term in Eg21), not the changes im. How-
Although the results do not agree with the momentum-ever, when we examine the surface-parallel current in a
balance predictions in Eg$3) and (6), the deviations are model with constant, and variations inr, the deviations
small and smooth functions of frequen@yHence there is from Eq. (3) are controlled by the scattering rates. Some
little evident surface sensitivity, and one can essentially reresults forl’g are shown in Fig. 5. For simplicity we keep
produce plots os-waveI"s using local optics and a single- the selvedge widthtat A and usew,, 7,= 10, but the value of
step model. 7 in the selvedgeys, is varied. Note that over a range of
Matters are more interesting with incidgmtvaves, where frequencies below,,, the sign ofl’g can be changed if the
induced surface charges in both first and second-order reswdtirface scattering rate is increased. This is a clear indication
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/o, o/,

FIG. 5. Dimensionless photon-drag current parallel to the sur- FIG. 6. Dimensionless photon-drag current orthogonal to the
face vs frequency for different angles of incidence in a double-stefp!2ne of incidence vs frequency in a double-step model. The light is
model. The incident light ip polarized and only the scattering rate Incident at 45° and is linearly polarized at 45° to the plane of
is stepped: i is 5 (0.2) times 1#, for the thick (thin) curves. incidence. Only the scattering rate is stepped and the Edished

curves are for H being 5(0.2) times 1f,. The two pair of thin
that the momentum-balance predicti@® no longer applies. Curves bound the range of possible values f_or _differe_nt phase rela-
To understand this behavior one needs to consider the micrdons between the andp components of the incident light.
scopic variation of the driving terms in Eq33). For
p-polarized light all the terms are nonzeroput not neces- tive on both thex andt axes, which we describe by a phase
sarily of the same sign even ifis constant. The net current angle of ¢=0. If ¢ is varied between O aner, the net

is determined by polarization changes from linear, to circular, and back to
linear (but orthogonal to the starting directiphe range of

dx(O- T =fdx )(O-R(X)), 4 I'; values that could be obtained by such variations

f (Q-2) 7({Q-R(x)) @0 (0= ¢=27) are bounded by the thin curves in Fig. 6. Note

so we can imagine changing the sign of the integral by usinghat the magnitude df, which depends on the failure of the
variations in (positive 7 to differently weight the sign- momentum-balance predicti@8), is noticeably smaller than

. A B . I'y's of Fig. 1. We also remark that it is only fdr; (and
varying{Q:R(x)). In more physical terms, the strengihd with 7 not constarft) that one finds a “mixing” contribution

direction of the driving force exerted on the electrons by th o .
light varies with depth into the metal. In our simple model‘at:)(at\"’(:“ens andp polarizations. Neithef'q nor I'y depends
on the phase angle.

one may view via Eq(47) electrons at deptk as responding
locally to the driving force at that depth. So if we allow the
electrons a longer scattering time at those depths where the C. Alternate calculational scheme

driving force is in one direction, and a shorter one over the In preparation for work on more sophisticated models. we
depths where the driving force is in the opposite direction, prep P '

we can “engineer” the direction in which the net current seek a way to simplify the computational effort. O_ur goal is
flows. to establish an analog of the shortcuts used in second-

One can further exploit this idea to produce a nonzerdﬁ'armonIC generatioff. The basic idea is to evaluate long-

surface-parallel current orthogonal to the plane of incidence(r.:zrllgi;tgnéug ?ttj?;ns 2”2%?53%;;'”&%'2:Etggditgg’ ir:)?]:g_
In Fig. 6 we plotI’; defined by 9 y 9

tarded expressions, where by contributions we mean the vari-
- (S) ous parts of the driving fieldx- R) of Eq. (33). We consider
f dx<t']2>_rt00(ﬁec> (48) only (§<~ F_i> (andI',) because we are looking toward models
- where 1f is constant, and hence the momentum balance re-
for the same model as used in Fig. 5. If one has QeS¢ (3) will hold for surface-parallel currents.
polarization in the incident ||ght, the(f[ R> iS-) identica”y The |0ng_range contributions are those terms in (BG)
zero. But if we mix the two polarizationg{-R) becomes whose spatial variation in bulk is set by the transverse wave
nonzero, although for constantits integral overx remains  vectorpt of Eq. (46). Their amplitudes are approximated by
zero. Hence, if we use to give uneven weights, we can the results of local optics for a one-step model. This amounts
remove cancellations in the integid8) and find a nonzero to ignoring thed-parameter corrections to the transmission
I';. The value ofl’; depends not only on the magnitudes of amplitudes of transverse waves, which is typically an error of
thes andp components of the polarization, but also on theira few percent or les$® The resulting driving fields are sen-
relative phase. For the results shown by the thick curves isitive to the(large) value of the speed of light in the sense
Fig. 6 the projection of the net polarization direction is posi-that formally allowingc to increase decreases the size of
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these fields but increases their spatial extent. Their integre 5
over the normal coordinate is consequently insensitive, to

and to any screening imposed by Eg5) and to their trun-

cation near the surface. Hence, figr|w,|p+|/xo<1, one

can find a reasonable analytic approximation to the long
range contributions. To understand its form we write out the 3
complex amplitude for the first-order, local optics, single-

step,p-wave, electric field c 2f
Elzc_EleMQ'X—mt) 1
w
(Q,—p,,0€P*+r(Q,p,,00e X, x<0
t(Q,—pr,00€'P™, 0<x. 49
Herep+ is the value of Eq(46) in the bulk,p,= (w/c)cosd To0 10 20 30

is its value in vacuum, an@=(w/c)sin 6. The triplet of W/,

numbers for each partial wave describes the field compo-

nents along, Q, andt. By matching acrosg=0 with the FIG. 7. Dimensionlessh parameter vs frequency. The solid
standard boundary conditions of continudtjsandD, , one  (dashed curve is for a doubletsingle) step model. These results,
finds the Fresnellocal opticg results for the reflection and combined with Eq(58), yield good agreement at any angle of in-

transmission amplitudes, cidence with the full calculations shown in Figs. 3 and 4.
€pP, — Pt Along with dropping the Lorentz force term here, all vectors
= €oPy+ P1 have been replaced with their normal components. See the
’ Appendix of Ref. 26 for a detailed rationale. The correspond-
2p, ing form of Eq.(32) is
= (50
€pPy + Pr w2
R R R 0= +(R (54
From E;, one construct8, and j,, determines the long- ar Bar= ﬁoﬁx<p2> (R,

range contributions tax-R), and integrates thenitimes  which is to be solved in a multistep model subject to the
47/ wi) overx>0 to produce the long-range contribution to ABC'’s of continuity of(E,) at each interface, and continuity
I’y for incidentp waves, of Eq. (28) at internal interfaces. Finally, we parametrize the

L integral over the second-order, short-range electric-field nor-
Fip)~(1+|r|2)c0329+ §|t sing( eb—1)|2. (51 mal component by

Here|r|? is the reflection coefficient, and E€51) looks like

a (local-optics momentum-balance result, plus a correction. —J dx(Ezy=4m|a4|%hlpy, (59

But it is not the completd&? , since we have so far ignored

short-range contributions. These are by definition the term#here oy is the first-order induced surface charge density,

remaining in Eq(33) after the long-range contributions are o1=JdX p;. It is througho, that one connects back to the

removed. full three-dimensional problem. Applying Gauss'’s law to Eq.
This removal may be formally accomplished by letting (49) gives

c—; i.e., working in the nonretarded limit. In this limit the

transverse wave vectogs; andp, vanish, while longitudi- Amoy=A(X-Ey) =€ @* “Vsing[t—(1+1)], (56)
nal wave vectorgfor motion alongx) which leads to
~9 2 1/2
w°—w S
pL=< — —QZ) (52) |4y |*=8m Q |t sinf(ep—1)[2. (57)
0

are scarcely modified by setti@—0. This approximation Substituting Eq(57) into Eq.(55), and adding the result to
is reasonable because the velocity paramgiein metals is ~ Ed- (51) yields the approximate result

roughly two orders of magnitude smaller thanlt yields a ) 5 L ) 5
short-rangegone dimensionalform of Eq. (33), IP'=(1+|r|*)cog0+(z+2h)|t sind(e,—1)[*. (58)

. Aside from the Fresnel amplitudes, one only needs the
(X-R)e-x—(R) frequency-dependent parameketo evaluatel“&p) .
v, py (1. ’33 We calculated the frequency dependencé u'Ji_ our one-
<11W> < (;]1 3 axp1)> and two-ste_p mod_els. The resul_ts are shown in F_|g. 7 and
when combined with Eq58) provide a good approximation
(53)  to the complete evaluations in Figs. 3 and 4. For the single-

Po
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step modeh is a smooth function of frequency. Its limiting whether one is calculating, at 2w or static. We can hence
value asw—0 is — 35, and its increase abowe, is coun- relateh to the a parameter of second-harmonic generation
tered by the rapid decrease |&f,—1|? in Eq. (58). For the  [noting Ref. 16 and Eq(CS-15]:

double-step modeh exhibits a multipole plasmon peak be-

low wp and a sequence of scattering resonances abgve h(w=0)=3%a(w=0). (60)
These are responsible for most of the extra structure in Fig. 4
compared to Fig. 3. As for the accuracy of E§8), note that From Table | in Ref. 3, which lista(w=0) for various

only in the vicinity of the multipole peak does one see amodels, we see that our hydrodynamic results are too small
slight discrepancy with the full calculation. Hence it appearsin magnitude by about a factor of 100. Using betterore
that for I'(" one needs to focus just on the nonretardednegative values ofh from the quantum evaluations of den-
one-dimensional calculation &f, rather than to include the sty response will mak& " <0, at least over a range of low
full set of Maxwell equations. This will greatly simplify frequencies and at larger angles of incidence. This sign
quantum-mechanical treatments of the photon-drag emghange arises from short-range forces near the surface. At
along the surface normal, as it has for second-harmonig =0, j; vanishes so the only driving term in E(?J) is
generatior. +(B5/6po) (9l 9x){p?), which is strictly positive in a one-
We are setting up such calculations now, but will end ourstep hydrodynamic model. This leads in turn to a negative
discussion by noting two cases where the quantum value qf,) which means that, in second-order, electrons have been
theh parameter is already known. To understand the conneqylled toward the surface by the light; i.e., in the opposite
tions note that, by Gauss’s lawE,) of the nonretarded djrection from what one expects due to radiation pressure.
problem obeys {/9x)(Ez) =4m(p,), SO we may rewrite EQ.  The hydrodynamic model obtains the right sign of this effect,
(55 as but badly underestimates its magnituté.

thbf dx X p,)!|oq|?. (59 D. Conclusions

There exists a special case where the required perturbed dens't(i)ninjerlt(\alzrfl:)ouri nr?(())r?gn(t:l?rlr?ubl::;)nncse g?vﬁrﬁgr?t\g’r;:atijéng:ct
sities can be exactly calculated: a single, isolated surface Of%esults i special cases. However th?are are also gsituations
parabolically confined electron g&sFor this special barrier P ' '

the d parameters vanish at all frequencies, and the second "lE 1o B2 TS R TR VAR BETS, 0 e
harmonica parameter is exactly-2. From Eq.(59) we ob-

i - N o i tion of depth into the metal can lead to a reversed direction
tain the additional exact resui(w)=—z. This implies, via  for the surface-parallel current. With the emf induced along
Eq.(58), thatT'{” for this system is given by the momentum- the surface normal, the sign and magnitude of the effect is a
balance result,I‘ff’)=(1+ R(P)cod #, with no surface- sensitive function of the equilibrium electron-density profile
sensitive corrections. and microscopic quantum-mechanical calculations will be

The other case where we can relatéo known results is needed to give reliable predictions. These should be tractable
in the low-frequency limit. Asw—0, it does not matter with the h-parameter approach we have outlined.
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