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Hydrodynamic theory of photon drag
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Department of Physics, Indiana University, Bloomington, Indiana 47405

~Received 24 June 1997!

We derive and evaluate a hydrodynamic theory of photon-drag effects in simple metals. Considering a
jellium surface obliquely illuminated by monochromatic light, we calculate both the steady surface-parallel
current and the emf induced along the surface normal. The sizes of these effects are estimated with a variety
of approaches, ranging from momentum-balance arguments, through sum rules, to detailed microscopic cal-
culations using a hydrodynamic description of the electrons’ dynamics. Comparisons between the sometimes
different results help clarify the physical origin of the phenomena, in particular, the extent to which effects are
surface sensitive. We also outline a calculational approach that should allow a tractable incorporation of
quantum-mechanical dynamics.@S0163-1829~97!04247-1#
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I. INTRODUCTION

In this paper we consider a variety of ways to calcul
photon-drag effects in simple metals. Our basic scheme
adapt the hydrodynamic approach to second-harmo
generation1 to treat the related problem of photon drag. If t
light incident on the system is at frequencyv, its time varia-
tion can be represented by cosvt, which also sets the varia
tion of first-order response quantities. Second-order respo

quantities would then vary qualitatively as cos2(vt)51
2@1

1cos(2vt)#. The cos(2vt) term describes the second
harmonic response, while the constant term describes
photon-drag response. From this point of view second h
monic and photon drag should be similar in regard to th
physical origin and surface sensitivity. However, as we sh
here, detailed arguments and computations for the
classes of response can be quite different.

Many of these differences arise from how the seco
order response reveals itself. In second-harmonic genera
and more generally sum-frequency generation,2 the observ-
able effect is radiation, whose intensity varies with t
square of the second-order response. In contrast, with ph
drag one is concerned with dc effects, either currents
emf’s that have been induced in the conductor. These
directly proportional to the second-order response, and
quire either dc transport theory or static screening for th
description, rather than radiation theory. Thus one ends
calculating quite different physical observables, which lea
to different approximations, notation, language, etc. One
our goals in this work is to stress, where possible, comm
features between second-harmonic and photon-drag ef
by using a model that can be applied to both.

Our model is jellium, which is reasonable for simple me
als, and is where most first-principles calculations of seco
harmonic generation have been done.3–5 However, it strictly
forbids interband transitions, which is the mechanism co
monly used to describe photon drag. Most of this work h
also been focused on semiconductors; see the book
Grinberg6 for a review of the early efforts in bulk materials
Later, considerable effort was also made on semicondu
quantum-well systems, and only more recently on meta
560163-1829/97/56~23!/15421~10!/$10.00
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conductors. See Ref. 7 for a brief review and a long list
references. Although most of this work has been built on~if
theoretical! or interpreted with~if experimental! interband
transitions, a model that only allows intraband transitio
also produces photon-drag effects, and allows a tracta
analysis of surface sensitivity, which is a particular inter
for us. We describe the electrons’ dynamics by using a p
nomenological hydrodynamic equation of motion. As wi
the jellium model, this provides a crude but tractable desc
tion, and one that can be readily compared with seco
harmonic calculations.1

We begin in Sec. II with formal arguments that avo
microscopic details. Similar arguments have been used
others before, in particular by Gurevich and coworkers,8–10

and by Thellung.11 The predictions of these arguments s
the scale for comparisons with more involved treatments.
are able to show that in some special cases these argum
give the exact results for our model even though they fai
general. In Sec. III we develop the full microscopic solutio
This involves not only expanding the equation of motion in
suitable series of orders, but also choosing the additio
boundary conditions~ABC’s! that are needed to obtain com
plete solutions. Then a sequence of model calculation
described which illustrates the range of behaviors that
possible. By varying conditions near the surface, we iden
which parts of the calculation are surface sensitive. Fina
with an eye on future work, we show how our comple
solution can be essentially reproduced by a simpler pro
dure which avoids retardation~and solving the full set of
Maxwell’s equations! in the numerical work.

II. MOMENTUM BALANCE ARGUMENTS

The following derivations are not rigorous, but inste
suggestive of what to expect when a laser beam illumina
the flat surface of a thick conductor in which only intraba
transitions are important~i.e., semi-infinite jellium!. Let the
angle of incidence of the wide light beam beu. We ignore
the effects due to the edges of the beam. The polarizatio
the light is not relevant for the general arguments, but
important for quantitative calculations. The incident Poy
ting flux along the beam direction is calledS, and the mono-
15 421 © 1997 The American Physical Society
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15 422 56JOHN ERIC GOFF AND W. L. SCHAICH
chromatic light is assumed to have frequencyv.
First consider the light ‘‘pressure’’~actually a shear

stress! on the surface due to momentum transfer paralle
the surface. The flux of photons striking the surface
(S/\v)cosu. If a photon is reflected, it transfers no mome
tum parallel to the surface; while, if it is absorbed, a mom
tum (\v/c)sinu is given to the metal. Hence the force p
unit area parallel to the surface is

f i5S S

\v
cosu D ~12R!S \

v

c
sinu D5

S

c
sinu cosu~12R! ,

~1!

whereR is the reflection coefficient.
We now argue that under steady-state conditions this

of transfer of momentum from the light to the electrons n
the surface must be balanced by resistive drag for
Crudely representing these with a constant relaxation-t
approximation, we write

f i5E dx
nmv i

t
5

m

etb
E dx~nev i!5

m

etb
E dx Ji~x!.

~2!

Heren is the density of electrons, andv i is the component of
their drift velocity parallel to the surface. The variablex runs
along the surface normal, and the metal lies inx.0. Each
electron has massm.0 and chargee,0. The physical pic-
ture is that the electrons gain momentum by absorbing lig
and lose momentum by resistive scattering, quickly settl
into a steady drift parallel to the surface. Although a curr
is produced, no charge build-up occurs. The density of
parallel current,Ji , varies with depthx, and vanishes be
yond the penetration depth of the light fields and before
back side of the sample is reached. Our simple argum
only produces the integral ofJi over x.

Combining Eqs.~1! and~2!, we can express the result fo
the time-averaged current per unit length flowing paralle
the surface in several ways:

E dx^Ji&5S e

mc2D ctb^S&sinu cosu~12R!

5s0S ^S&
nbecD sinu cosu~12R! . ~3!

Here angular brackets denote a time average, and with
free-electron mass (ueu/mc2)51.96 mA/W. Also, s0 is the
dc conductivity,s05nbe2tb /m, while 1/nbec is the free-
electron Hall coefficient, both written in terms of the bu
electron densitynb . It is remarkable that although the cu
rent is a nonlinear response, one needs only linear-resp
properties to evaluate Eq.~3!, which allows simple estimate
of the magnitude of the photon-drag current.8

Before considering the limitations of the above derivatio
let us briefly consider the response along the surface no
for which the argument changes in several ways. The p
jected incident flux is still (S/\v)cosu, but now even re-
flected photons transfer momentum to the metal. The li
pressure normal to the surface is
o
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f'5S S

\v
cosu D @~12R!12R#S \

v

c
cosu D5

S

c
cos2u~11R! ,

~4!

where the two contributions in the square brackets are du
absorbed and reflected photons, respectively.12 If we imagine
an open circuit configuration, this light pressure cause
distortion of the electron charge density, which in turn i
duces an electric field whose force on the electrons coun
the light pressure. We write

f'52E dx neEind5nbeDE, ~5!

whereDE is the induced emf between below and above
surface. Combining Eqs.~4! and ~5!,

e^DE&5
^S&
nbc

cos2u~11R!

5
^np&
nb

\v cos2u~11R! , ~6!

wherenp is the density of photons in the incident beam. O
way to view this result is as a light-induced change in t
work function. Alternatively if one can arrange for a curre
to flow in part alongx̂ through the region whereEindÞ0 ~see
Ref. 13!, then^DE& represents the light-induced emf in suc
a circuit.

Our results for the parallel and perpendicular respo
@Eqs. ~3! and ~6!, respectively# are appealing for their sim
plicity, but suspect for the same reason. We assumed for
electrons that their equilibrium density and scattering rate
constant right up to the sharp edge of the surface. We h
ignored the finite width of the light beam and the fini
height of the electron surface barrier. Allowance for electr
flow out of the illuminated region or out of the metal wi
complicate the analysis. The key idea of balancing rates
momentum transfer is not always valid, at least in the sim
form we have applied it. Since free electrons cannot abs
photons, appropriate third bodies as sources of momen
should be considered. Yet in our argument the spatial in
mogeneity of the surface potential and/or of the scatter
field responsible for 1/t were ignored.

To correct all these approximations is too difficult
present. However, with the aid of the hydrodynamic equat
of motion, the consequences of several can be usefully
amined. For the rest of this section we will outline an ana
sis which clarifies if and when the simple momentum
balance results, Eqs.~3! and~6!, are reliable. Our method is
based on combining moments of the hydrodynamic equa
with Maxwell’s equations to derive formal results~sum
rules!, which contain Eqs.~3! and ~6! plus correction terms.
In some cases we can prove that the correction terms
identically zero, while, in others, microscopic model calc
lations are needed to quantify the importance of the corr
tions.

The hydrodynamic model we use is defined by the follo
ing equation of motion for the electron velocity fieldvW (xW ,t):
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]vW

]t
1~vW •¹W !vW 5

e

mFEW 1
1

c
vW 3BW G2

1

mn
¹W p2

1

t
vW , ~7!

whereEW andBW are electric and magnetic fields, respective
andp is the pressure, which we assume depends only on
densityn throughp5zn5/3 with z a constant. Our approac
to ~approximately! solving Eq.~7! is based on expanding a
variables there in a series of orders.

A5A01A11A21••• , ~8!

with A;vW ,EW ,BW ,p, or n and generating a sequence of equ
tions of fixed order.1 Since theA0 terms are equilibrium
values, we assume that bothvW 0 andBW 0 vanish. In this section
we seek analogs of Eqs.~3! and~6!, rather than a full micro-
scopic solution. To this end introduce the charge den
r5ne and the current densityjW5nevW , and use the equatio
of continuity

]r

]t
1¹W • jW50 ~9!

to rewrite the second-order version of Eq.~7! as

S ]

]t
1

1

t D jW252~ jW1•¹W !vW 12~¹W • jW1!vW 1

1
e

mFrEW 1
1

c
jW3BW G

2

2
e

m
¹W p2 . ~10!

The second-order contributions to the terms in the squ
brackets are

FrEW 1
1

c
jW3BW G

2

5r0EW 21r2EW 01S r1EW 11
1

c
jW13BW 1D

~11!

where the pieces within parentheses in Eq.~11! can be ex-
actly rewritten14 in terms of the light’s momentum density

gW 5
1

4pc
~EW 13BW 1!, ~12!

and the Maxwell stress tensor

TJ5
1

4p
@EW 1EW 12 1

2 1J~EW 1•EW 1!1BW 1BW 12 1
2 1J~BW 1•BW 1!#

~13!

as

r1EW 11
1

c
jW13BW 152

]gW

]t
1¹W •TJ. ~14!

Substituting back into Eq.~10! and taking a time average, w
obtain

m

te
^ jW2&2r0^EW 2&5^r2&EW 022¹W •^KJ &1¹W •^TJ&2¹W ^p2&,

~15!

where KJ5 1
2 mn0vW 1vW 1. The time average over the perio

2p/v of the light has eliminated the second-harmonic pa
of Eq. ~10! and all time derivatives. The quantities in E
,
he

-

ty

re

s

~15! are second-order, steady-state values. Although time
dependent, they are, in general, position dependent.

We are interested in the amount~at second-order! of cur-
rent flowing parallel to the surface and the emf develop
along the surface normal. These are defined by*dx^X̂• jW2&
and 2*dx^x̂•EW 2&, respectively, whereX̂ is a unit vector in
the surface plane, andx̂ is a unit vector along the surfac
normal. The integrands for these quantities can be disce
on the left-hand side of Eq.~15!, while on the right-hand side
are many derivative terms that can be integrated exactly.
the surface parallel current we find, ift→tb independent of
x,

m

etb
E dx^X̂• jW2&52^X̂•KJ ~0!• x̂&2^X̂•TJ~0!• x̂&. ~16!

We have also used a symmetry that, neglecting beam
sample~side! edge effects, implies thatEW 0 ,^EW 2&, and¹W ^p2&
all point alongx̂. For the emf along the surface normal in a
open circuit, we find, ifr0→rb independent ofx,

2rbE dx^x̂•EW 2&52^x̂•KJ ~0!• x̂&2^ x̂•TJ~0!• x̂&1^p2~0!&.

~17!

The reason the term withEW 0 does not contribute is becaus
the zeroth-order form of Eq.~7! hasEW 0}¹W r0, which van-
ishes here sincer0 is presumed constant. For both Eqs.~16!
and ~17! we have assumed that all quantities become ne
gible deep in the bulk.

Equations~16! and~17! are close to Eqs.~3! and~6! if we
note thatJi;X̂• jW2 andEind; x̂•EW 2. It remains to evaluate a
x50 the terms on the right-hand side of Eqs.~16! and~17!.
We claim that the relevant elements of the kinetic-ene
density tensor vanish because one requiresx̂•vW 1(0)50 to
ensure that the first-order induced charge density at the
face be nonsingular. The contributions of the stress ten
elements are found from first-order field components. Si
in the microscopic solution of the hydrodynamic model o
also requires that all first-order fields be continuous throu
x50, the evaluation ofTJ is most easily done on the vacuu
side of x50, where only incident and reflected transver
waves are present. Call the projection of the incident lig
wave vector in the surface planeQ, and define a set of Car
tesian axes by the triplet of unit vectors (x̂,Q̂, t̂5 x̂3Q̂).
Thusx̂ andQ̂ lie in the plane of incidence, andt̂ is orthogo-
nal to it. For eithers- or p-polarized light, we find

^Ttx~0!&50, ~18!

^TQx~0!&52
^S&
c

cosu sinu~12R!, ~19!

^Txx~0!&52
^S&
c

cos2u~11R!, ~20!

whereR is the appropriate reflection coefficient. For a mi
ture of s- and p-polarized light, there are no cross-term
between the different polarizations, and one simply repla
R with apR(p)1asR

(s), whereap1as51, with ap(as) the
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15 424 56JOHN ERIC GOFF AND W. L. SCHAICH
time-averaged fraction of the incident beam’s flux polarize
in ~orthogonal to! the plane of incidence. For circularly po-

larized lightap5as5
1
2 .

Thus for the current parallel to the surface we have, fro
Eqs. ~16!, ~18!, and ~19!, exactly reproduced Eq.~3!. How-
ever, for the emf along the surface normal the implication
Eqs. ~17! and ~20! is that a correction term is missing from
Eq. ~6!. One should write

e^DE&5
^S&
nbc

cos2u~11R!1
^p2~0!&

nb
. ~21!

To quantify the size of this correction, we need to go beyo
the formal manipulations used so far and carry through a f
microscopic calculation to find̂p2(x)&. This is a consider-
able effort and is described in Sec. III. Here we want
illustrate the numerical results before giving the algebra
detail.

The model system we evaluate has a bulk density d
scribed byr s52.07, the value appropriate for Al. Results fo
different bulk densities, sayr s'4 for Na, give qualitatively
similar plots. The important energy scale is set by the bu
plasmon, which for Al has the value of\vb515.8 eV. The
scattering timetb is set atvbtb510. In Fig. 1, we show the
spectral dependence of the surface-parallel current in a o
step model, i.e., a model wherer0 andt are each constant in
the jellium. The dimensionless quantity plotted is defined b

E dx^Q̂• jW2&5GQs0S ^S&
nbecD , ~22!

and since the momentum-balance result is exact for a o
step model of the surface-parallel current, he
GQ5sinu cosu (12R). The structure in the plots is simply
due to the drop inR from nearly 1 to nearly 0, as the fre-
quency moves through the threshold for transparency
transverse waves in bulk atvb /cosu. The jump inGQ sharp-
ens astb is increased. We remark that the total integrate

FIG. 1. Dimensionless photon-drag current parallel to the su
face vs frequency for different angles of incidence in a one-st
model. Results forp-polarized light lie everywhere above those fo
s-polarized light. HereG t[0, and the momentum-balance predic
tion is exact.
d
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current,*dx^Q̂• jW2&, tends astb→` to a nonzero, finite re-
sult over the frequency range where 1/tb is necessary for
optical absorption. This range extends up tovb /cosu for
incidents waves, but only up tovb for p waves. The upper-
frequency limit is set by the threshold for plasmon creatio

The similarity betweens andp waves evident in Fig. 1 is
lost when we examine the emf induced along the surfa
normal. Results are shown for the one-step model in Figs
and 3 for incidents and p waves, respectively. In both fig-
ures the dimensionless quantity plotted is defined by

2eE dx^x̂•EW 2&5GxS ^S&
nbcD . ~23!

If the momentum balance result were exact,Gx would be
cos2u (11R). This is nearly true for thes wave case, but is

r-
p

FIG. 2. Dimensionless photon-drag emf along the surface n
mal vs frequency for different angles of incidence in a one-st
model. The incident light iss polarized. The thick curves are base
on the full evaluation, Eq.~21!, while the thin curves are from the
simple momentum-balance result~6!.

FIG. 3. Same as Fig.~2!, except here the incident light isp
polarized. The results foru50 are omitted since they are the sam
as those in Fig. 2. The thin solid lines are based on Eq.~58!.
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56 15 425HYDRODYNAMIC THEORY OF PHOTON DRAG
clearly wrong forp waves. For the latter case the last term
Eq. ~21! is a significant correction, and completely chang
the spectral dependence. In Sec. III we delve further into
microscopic details in order to understand the physics beh
this interesting structure. We will also find that the relative
simple appearance of theG ’s in Figs. 1 and 2 can be consid
erably modified if one goes beyond a one-step model of
metal surface.

III. MICROSCOPIC CALCULATIONS

In this section we derive and evaluate microscopic exp
sions for the photon-drag response. Within the hydro
namic model such calculations are fairly straightforward,
we concentrate on questions of principle and numerical
sults.

A. Basic equations

The formal analysis is quite similar to that developed
second-harmonic generation by Corvi and Schaich~CS!.1,15

One begins by expanding Eq.~7! into a series of orders—se
Eqs.@CS—4~a!–4~c!#. From the zeroth-order equation, a r
lation betweenEW 0 and the gradient ofr0 is obtained~CS-7!:

EW 05
4pb0

2

v0
2

¹W r0 , ~24!

where v0
254pn0e2/m and b0

25 5
3 zn0

2/3/m. We will choose
the parameterz so that

b0
25 3

5 vF
2 ~25!

with vF the Fermi velocity of a uniform free-electron gas
densityn0. This allows an accurate description of the bu
plasmon dispersion.16 Next we use Eq.~24! to eliminateEW 0
from the higher-order equations of motion. At first order th
leads to Eq.~CS-8!,

S ]

]t
1

1

t D vW 15
e

m
EW 12¹W S b0

2

r0
r1D . ~26!

For our model calculations we shall assume thatn0 and
1/t have a steplike dependence on the surface-normal c
dinatex. In order to decide what ABC’s to impose acro
planes wheren0 and/or 1/t have discontinuities, our criteria
are to require that all electromagnetic field components
continuous and to suppress singularities in other phys
quantities as much as possible. Since we have the freedo
choose only two ABC’s at an internal interface~wheren0 is
nonzero on both sides of the interface! and just one ABC at
the external interface~with vacuum!, our options are rathe
limited. To supplement Eq.~26!, we impose continuity of

@(b0
2/r0)r1# at each internal interface, which keepsx̂•vW 1

from being singular. Similarly, to keepr1 nonsingular~and
x̂•EW 1 continuous!, we require the continuity ofx̂• jW1 from
Eq. ~9! at all interfaces. These first-order ABC choices a
the same as used by CS. Note that, although they ensur
continuity of several quantities~all components ofEW 1 and
BW 1, x̂• jW1! for another set of quantities~r1, surface-parallel
s
e
d

e

s-
-
o
-

r

or-

e
al
to

e
the

components ofjW1, all components ofvW 1, and normal deriva-
tives of any component ofEW 1 andBW 1), they in general only
suppress singularities, not discontinuities. These limitati
cause trouble at second-order.

The useful analog of Eq.~26! in second-order is Eq.~CS-
10!,

S ]

]t
1

1

t D vW 25
e

m FEW 21
1

c
vW 13BW 1G2~vW 1•¹W !vW 1

2¹W Fb0
2

n0
S n22

1

6

n1
2

n0
D G . ~27!

Again, with an eye on Eq.~9!, we impose at all interfaces
continuity of x̂• jW2 to keepr2 nonsingular andx̂•EW 2 continu-
ous. The remaining ABC at internal interfaces is used
suppress the singularities associated with the normal der
tive of discontinuous quantities. Specifically, we require co
tinuity of

1
2 ~ x̂•vW 1!21

b0
2

r0
S r22

1

6

r1
2

r0
D . ~28!

Note that, if t is continuous, Eq.~26! implies that the
surface-parallel components ofvW are continuous too. Ou
second-order ABC’s then are equivalent to those of CS.
if t is discontinuous at an internal interface~which CS did
not allow!, the ABC’s proposed here are different. In partic
lar, at a discontinuity int, there is a singularity in the
surface-parallel components of (vW 1•¹W )vW 1, which implies a
d-function contribution to the induced second-order curr
density.

This complication is an unappealing feature of our mo
solution. It would not arise if we did not allow discontinu
ties in t andn0.17,18 But if t andn0 vary smoothly withx,
one loses the convenient option of matching plane-wave
lutions across various interfaces, and must numerically in
grate the equations of motion over allx. In our opinion this
extra effort is not justified in an initial analysis. It woul
seem more appropriate to make such a computational inv
ment later for a more sophisticated model, one that g
beyond hydrodynamics to better treat the electrons’ dyna
ics with quantum mechanics.

The hydrodynamic equations we need to solve in regi
of constantn0 andt are, at first order@Eq. ~CS-9!#,

S ]

]t
1

1

t D jW15
v0

2

4p
EW 12b0

2¹W r1 , ~29!

and, at second-order@Eq. ~CS-13!#,

S ]

]t
1

1

t D jW25
v0

2

4p
EW 22b0

2¹W r21RW , ~30!

where the nonlinear driving terms

RW 5
e

mc
~ jW13BW 1!2~ jW1•¹W !vW 11S ]

]t
1

1

t D S r1

r0
jW1D

1
r1

3r0
b0

2¹W r1 ~31!
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15 426 56JOHN ERIC GOFF AND W. L. SCHAICH
are bilinear in first-order quantities. These equations are t
solved together with Maxwell’s equations and the equat
of continuity. Up to this point, our theory applies equa
well to photon drag and second-harmonic generation.
now break this generality by taking a time average of E
~30! to extract the steady-state terms

1

t
^ jW2&5

v0
2

4p
^EW 2&2b0

2¹W ^r2&1^RW &, ~32!

with

^RW &5
e

mc
^ jW13BW 1&2^~ jW1•¹W !vW 1&1K r1

r0
S 1

t
jW11

b0
2

3
¹W r1D L .

~33!

Note that the last average in Eq.~33! involves different func-
tions from Eq.~CS-14!.19

The quantities of interest in photon drag are readily fou
from Eqs. ~32! and ~33!. First note that, by symmetry, th
vectors ^EW 2& and ¹W ^r2& can only point along the surfac
normal. Hence the density of surface parallel current is s
ply

^X̂• jW2&5t^X̂•RW &. ~34!

There is no screening of these components. Alongx̂, matters
are slightly more complicated. By symmetry,^x̂• jW2& can
only depend onx, and by the equation of continuity must i
fact be constant. For an open circuit configuration, wh

^x̂• jW2& vanishes in vacuum, our ABC of continuous^ x̂• jW2&
implies then that̂ x̂• jW2& is identically zero. We are left with
the ~static! screening problem

S ]2

]x2
2k0

2D ^x̂•EW 2&5
4p

b0
2 ^x̂•RW &, ~35!

where we used Gauss’s law to eliminate^r2&. The screening
wave vector that appears here,k0

25v0
2/b0

2, is set by the
choice ~25!. To change it to the more physically appealin

Thomas-Fermi value would require replacingb0
2→ 1

3 vF
2 .

Since photon drag mixes behaviors at high and low frequ
cies, there is no obvious way with a single choice ofb0

2 to
describe both extremes appropriately.20

We use the method of partial waves to produce expl
solutions.1 In each region of constantn0 andt, the general
solution is written as a linear combination of plane wav
Their coefficients are determined by matching with the st
dard and additional boundary conditions across each plan
discontinuity inn0 and/ort. At first order the plane wave
have the common frequencyv and surface-parallel wav
vectorQ. They are distinguished by whether they are lon
tudinal or transverse, and by whether they propagate par
or antiparallel to x̂. For a real-valued, space- and tim
dependent vectorAW 1(xW ,t), we write

AW 1~xW ,t !5 Re@AW 1~x!ei ~Q•X2vt !# , ~36!

where Re@ # denotes ‘‘real part of’’ and the complex ampl
tudeAW 1(x) describes the polarization and propagation dir
tion ~along x̂) of the wave. Note that the convention in E
be
n

e
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d
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e
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.
-
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-
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~36! differs by a factor of 2 from Eq.~CS-15!. For the time
averages needed in Eq.~33!, we have the rule

^A1~xW ,t !B1~xW ,t !&5 1
2 Re@A1

* ~x$ !B1~xW !# . ~37!

With these definitions we can outline how one comple
the calculation of *dx^X̂• jW2& and 2*dx^x̂•EW 2&. For
the surface-parallel current we simply use Eq.~34!
for the integrand. The only point worth further discu
sion is how to handle the singularity int^X̂•RW & if t
is discontinuous. The singular contribution arises fro

2 1
2 Re @t„x̂• jW1(x)…* (]/]x)^X̂•vW 1(x)&#, where, from Eq.

~26!,

X̂•vW 1~x!5F e

m
X̂•EW 1~x!2 iX̂•Q S b0

2

r0
r1~x! D G Y ~2 iv

11/t!. ~38!

The numerator in Eq.~38! is continuous, as is„x̂• jW1(x)…* .
Hence if the jump int occurs atx0 we have, for the integra
over the singularity,

E
x0

2

x0
1

dx t^X̂•RW &52
Re

2 H „x̂• jW1~x0!…* F e

m
X̂•EW 1~x0!

2 iX̂•QS b0
2

r0
r1~x0! D G I J , ~39!

where

I 5E
xo

2

xo
1

dx t
]

]xS 2 iv1
1

t D 21

. ~40!

Assuming t varies monotonically fromt25t(x0
2) to

t15t(x0
1), we find, asx0

6 tends tox0 from above and be-
low, that

I 5D H 1

ṽ2
2

1

v2
ln~12 ivt!J , ~41!

whereṽ25v(v1 i /t) andD denotes ‘‘discontinuity in.’’
For the emf along the surface normal, the integra

^ x̂•EW 2& is nonsingular, but we must first solve the screen
problem~35!. In any step region of constantsn0 andt, we
can write, from Eq.~33!,

^x̂•RW &5 1
2 ReF(

j
Rje

2QjxG , ~42!

where both complex amplitudesRj and the complex wave
vectorsQj are known in terms of first-order quantities. W
then write in this same step region,

^x̂•EW 2&5 1
2 ReF4p

b0
2 (j

Rj

Qj
22k0

2
e2QjxG1l1ek0x1l2e2k0x.

~43!

Each step region has a pair ofl6 terms, except the bulk
where thel1 coefficient is set to zero. These coefficients
homogeneous solutions of Eq.~35! are determined by im-
posing the second-order boundary conditions. Specifica
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we require continuity of botĥx̂•EW 2& and the time average o
Eq. ~28! at each internal interface. We assume that
second-order electric field vanishes in vacuum; i.e., that
total induced charge at second order*dx^r2(x)&50. Our
final ABC is hence that̂ x̂•EW 2(01)&50. This set of con-
straints allows all thel ’s to be found, and then one ca
trivially integrate Eq.~43!. For a one-step model only onel
term is needed and we can write the screened second-o
field in x.0 as

^x̂•EW 2&5 1
2 ReF4p

b0
2 (j

Rj

Qj
22k0

2~e2Qjx2e2k0x!G . ~44!

To check the sum rule result~21!, we need

^p2~0!&5
mb0

2

e S ^r2~0!&1
1

3

^r1
2~0!&
r0

D . ~45!

Here r1(x) is determined solely by the first-order calcul
tion, and vanishes if the incident beam is pures wave. For
^r2(0)&, we apply Gauss’s law to Eq.~43!.

B. Model calculations

We now return to numerical examples. We will conce
trate on double-step models, wherein either the equilibri
density or the scattering rate is modified from its bulk va
over a thin layer of widthw of order Å at the surface. We
will also mostly show results for incident light that isp po-
larized, since these spectra show the richest structure
greatest surface sensitivity. Results fors-polarized light re-
main quite similar to those plotted in Figs. 1 and 2. T
physical reason for this distinct behavior is because at fi
order s-polarized light does not induce any longitudin
waves in the metal. The spatial variations alongx̂ are then
set by transverse wave vectors such as

pT5
v

c
~e2sin2u!1/2, ~46!

wherec is the speed of light ande is the ~local! dielectric
constant,e512v0

2/ṽ2 with v0 either a bulk or surface
value. For our choices of selvedge widthw, upTwu!1. The
only nonzero driving term in Eq.~33! for s waves is from the
Lorentz force. It is slowly varying, and extends far into t
bulk because its associatedQj there@see Eq.~42!# is given
by 2 Im(pT)!k0 with Im( ) meaning ‘‘imaginary part of.’’
There is consequently little screening of this driving fie
except near~on the scale ofw) the surface, which has hardl
any effect on its integral overx. We have made plots of th
surface-parallel current and emf along the surface nor
@described byGQ of Eq. ~22! and Gx of Eq. ~23!, respec-
tively# for s waves incident on a general double-step mod
Although the results do not agree with the momentu
balance predictions in Eqs.~3! and ~6!, the deviations are
small and smooth functions of frequency.21 Hence there is
little evident surface sensitivity, and one can essentially
produce plots ofs-waveG ’s using local optics and a single
step model.

Matters are more interesting with incidentp waves, where
induced surface charges in both first and second-order re
e
e

der

-

nd

t-

al

l.
-

-

ult

in longitudinal fields that are large and short ranged~i.e.,
surface sensitive!. In Fig. 4 we show results forGx for the
standard16,22 double-step model of Al. The selvedge width i
4 Å, and the equilibrium density there is 0.7 that in bulk. W
usevbt510 at allx. Compared to Fig. 3, there is additiona
structure both below and abovevb . The common peak for
all angles of incidence atv/vb;0.88 is due to a multipole
plasmon, which in a hydrodynamic model can be simp
viewed as a plasmon trapped in the selvedge.23 The location
of this peak is a sensitive function ofw andns , the selvedge
value ofn0. We found that its frequency position inGx cor-
relates well with the nonretardedQ50 multipole
eigenfrequency.24 It also correlates well with the location of
an extra peak in the reflection coefficientR(p). The latter
peak is a much smaller structure~changingR(p) by just a few
percent!, but is the only extra structure in the surface-parall
current compared to Fig. 1.21 For Gx this peak, as well as
those due to scattering resonances abovevb , produce much
larger effects than they do forR(p). This emphasizes that the
momentum-balance prediction~6! is not even qualitatively
valid for Gx with p-polarized light.

Next consider the response when one holds the equil
rium density constant, but allows the scattering rate to
changed near the surface. For the emf along the surface n
mal we find curves forGx , which are similar to those in Fig.
3. Increasing the scattering rate near the surface broadens
structures, while reducing 1/t sharpens them. The curves re
main significantly different from the momentum-balanc
prediction~6!, but these differences are fundamentally due
the correction term in Eq.~21!, not the changes int. How-
ever, when we examine the surface-parallel current in
model with constantn0 and variations int, the deviations
from Eq. ~3! are controlled by the scattering rates. Som
results forGQ are shown in Fig. 5. For simplicity we keep
the selvedge width at 4 Å and usevbtb510, but the value of
t in the selvedge,ts , is varied. Note that over a range o
frequencies belowvb , the sign ofGQ can be changed if the
surface scattering rate is increased. This is a clear indicat

FIG. 4. Dimensionless photon-drag emf along the surface n
mal vs frequency for different angles of incidence in a double-st
model. The incident light isp polarized and only the equilibrium
density is stepped. The thin solid lines are based on Eq.~58!.
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15 428 56JOHN ERIC GOFF AND W. L. SCHAICH
that the momentum-balance prediction~3! no longer applies.
To understand this behavior one needs to consider the mic
scopic variation of the driving terms in Eq.~33!. For
p-polarized light all the terms are nonzero,25 but not neces-
sarily of the same sign even ift is constant. The net current
is determined by

E dx^Q̂• jW2&5E dx t~x!^Q̂•RW ~x!&, ~47!

so we can imagine changing the sign of the integral by usi
variations in ~positive! t to differently weight the sign-
varying ^Q̂•RW (x)&. In more physical terms, the strengthand
direction of the driving force exerted on the electrons by th
light varies with depth into the metal. In our simple mode
one may view via Eq.~47! electrons at depthx as responding
locally to the driving force at that depth. So if we allow th
electrons a longer scattering time at those depths where
driving force is in one direction, and a shorter one over th
depths where the driving force is in the opposite directio
we can ‘‘engineer’’ the direction in which the net curren
flows.

One can further exploit this idea to produce a nonze
surface-parallel current orthogonal to the plane of incidenc
In Fig. 6 we plotG t defined by

E dx^ t̂• jW2&5G ts0S ^S&
nbecD ~48!

for the same model as used in Fig. 5. If one has purep or s

polarization in the incident light, then̂t̂•RW & is identically
zero. But if we mix the two polarizations,^ t̂•RW & becomes
nonzero, although for constantt its integral overx remains
zero. Hence, if we uset to give uneven weights, we can
remove cancellations in the integral~48! and find a nonzero
G t . The value ofG t depends not only on the magnitudes o
thes andp components of the polarization, but also on the
relative phase. For the results shown by the thick curves
Fig. 6 the projection of the net polarization direction is pos

FIG. 5. Dimensionless photon-drag current parallel to the su
face vs frequency for different angles of incidence in a double-st
model. The incident light isp polarized and only the scattering rate
is stepped: 1/ts is 5 ~0.2! times 1/tb for the thick ~thin! curves.
ro-
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tive on both thex̂ and t̂ axes, which we describe by a phas
angle of w50. If w is varied between 0 andp, the net
polarization changes from linear, to circular, and back
linear ~but orthogonal to the starting direction!. The range of
G t values that could be obtained by such variatio
(0<w<2p) are bounded by the thin curves in Fig. 6. No
that the magnitude ofG t , which depends on the failure of th
momentum-balance prediction~3!, is noticeably smaller than
GQ’s of Fig. 1. We also remark that it is only forG t ~and
with t not constant21! that one finds a ‘‘mixing’’ contribution
betweens and p polarizations. NeitherGQ nor Gx depends
on the phase anglew.

C. Alternate calculational scheme

In preparation for work on more sophisticated models,
seek a way to simplify the computational effort. Our goal
to establish an analog of the shortcuts used in seco
harmonic generation.26 The basic idea is to evaluate long
range contributions analytically using full retardation, and
calculate short-range contributions numerically using non
tarded expressions, where by contributions we mean the v
ous parts of the driving field̂x̂•RW & of Eq. ~33!. We consider
only ^x̂•RW & ~andGx) because we are looking toward mode
where 1/t is constant, and hence the momentum balance
sult ~3! will hold for surface-parallel currents.

The long-range contributions are those terms in Eq.~33!
whose spatial variation in bulk is set by the transverse wa
vectorpT of Eq. ~46!. Their amplitudes are approximated b
the results of local optics for a one-step model. This amou
to ignoring thed-parameter corrections to the transmissi
amplitudes of transverse waves, which is typically an error
a few percent or less.4,5 The resulting driving fields are sen
sitive to the~large! value of the speed of light in the sens
that formally allowingc to increase decreases the size

r-
p

FIG. 6. Dimensionless photon-drag current orthogonal to
plane of incidence vs frequency in a double-step model. The ligh
incident at 45° and is linearly polarized at 45° to the plane
incidence. Only the scattering rate is stepped and the solid~dashed!
curves are for 1/t being 5 ~0.2! times 1/tb . The two pair of thin
curves bound the range of possible values for different phase r
tions between thes andp components of the incident light.
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56 15 429HYDRODYNAMIC THEORY OF PHOTON DRAG
these fields but increases their spatial extent. Their inte
over the normal coordinate is consequently insensitive toc,
and to any screening imposed by Eq.~35! and to their trun-
cation near the surface. Hence, forupTuw,upTu/k0!1, one
can find a reasonable analytic approximation to the lo
range contributions. To understand its form we write out
complex amplitude for the first-order, local optics, sing
step,p-wave, electric field

EW 15
cE1

v
ei ~Q•X2vt !

3 H ~Q,2pv,0!eipvx1r ~Q,pv,0!e2 ipvx, x,0

t~Q,2pT,0!eipTx, 0,x.
~49!

HerepT is the value of Eq.~46! in the bulk,pv5(v/c)cosu
is its value in vacuum, andQ5(v/c)sinu. The triplet of
numbers for each partial wave describes the field com
nents alongx̂, Q̂, and t̂ . By matching acrossx50 with the
standard boundary conditions of continuousEi andD' , one
finds the Fresnel~local optics! results for the reflection and
transmission amplitudes,

r 5
ebpv2pT

ebpv1pT
,

t5
2pv

ebpv1pT
. ~50!

From EW 1 , one constructsBW 1 and jW1, determines the long
range contributions tô x̂•RW &, and integrates them~times
4p/vb

2) overx.0 to produce the long-range contribution
Gx for incidentp waves,

Gx
~p!;~11ur u2!cos2u1 1

2 ut sinu~eb21!u2. ~51!

Hereur u2 is the reflection coefficient, and Eq.~51! looks like
a ~local-optics! momentum-balance result, plus a correctio
But it is not the completeGx

(p) , since we have so far ignore
short-range contributions. These are by definition the te
remaining in Eq.~33! after the long-range contributions a
removed.

This removal may be formally accomplished by lettin
c→`; i.e., working in the nonretarded limit. In this limit th
transverse wave vectorspT and pv vanish, while longitudi-
nal wave vectors~for motion alongx̂)

pL5S ṽ 22v0
2

b0
2

2Q2D 1/2

~52!

are scarcely modified by settingQ→0. This approximation
is reasonable because the velocity parameterb0 in metals is
roughly two orders of magnitude smaller thanc. It yields a
short-range~one dimensional! form of Eq. ~33!,

^ x̂•RW &uc→`→^R&

52 K j 1

]v1

]x L 1K r1

r0
S 1

t
j 11

b0
2

3

]

]x
r1D L .

~53!
al
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Along with dropping the Lorentz force term here, all vecto
have been replaced with their normal components. See
Appendix of Ref. 26 for a detailed rationale. The correspon
ing form of Eq.~32! is

05
v0

2

4p
^E2&2b0

2 ]

]x
^r2&1^R&, ~54!

which is to be solved in a multistep model subject to th
ABC’s of continuity of^E2& at each interface, and continuity
of Eq. ~28! at internal interfaces. Finally, we parametrize th
integral over the second-order, short-range electric-field n
mal component by

2E dx^E2&[4pus1u2h/rb , ~55!

wheres1 is the first-order induced surface charge densi
s15*dx r1. It is throughs1 that one connects back to th
full three-dimensional problem. Applying Gauss’s law to E
~49! gives

4ps15D~ x̂•EW 1!5E1ei ~Q•X2vt !sinu@ t2~11r !#, ~56!

which leads to

u4ps1u258p
^S&
c

ut sinu~eb21!u2. ~57!

Substituting Eq.~57! into Eq. ~55!, and adding the result to
Eq. ~51! yields the approximate result

Gx
~p!5~11ur u2!cos2u1~ 1

2 12h!ut sinu~eb21!u2. ~58!

Aside from the Fresnel amplitudes, one only needs
frequency-dependent parameterh to evaluateGx

(p) .
We calculated the frequency dependence ofh in our one-

and two-step models. The results are shown in Fig. 7, a
when combined with Eq.~58! provide a good approximation
to the complete evaluations in Figs. 3 and 4. For the sing

FIG. 7. Dimensionlessh parameter vs frequency. The solid
~dashed! curve is for a double-~single-! step model. These results
combined with Eq.~58!, yield good agreement at any angle of in
cidence with the full calculations shown in Figs. 3 and 4.
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15 430 56JOHN ERIC GOFF AND W. L. SCHAICH
step modelh is a smooth function of frequency. Its limitin
value asv→0 is 2 1

36 , and its increase abovevb is coun-
tered by the rapid decrease ofueb21u2 in Eq. ~58!. For the
double-step model,h exhibits a multipole plasmon peak be
low vb and a sequence of scattering resonances abovevb .
These are responsible for most of the extra structure in Fi
compared to Fig. 3. As for the accuracy of Eq.~58!, note that
only in the vicinity of the multipole peak does one see
slight discrepancy with the full calculation. Hence it appe
that for Gx

(p) one needs to focus just on the nonretard
one-dimensional calculation ofh, rather than to include the
full set of Maxwell equations. This will greatly simplify
quantum-mechanical treatments of the photon-drag
along the surface normal, as it has for second-harmo
generation.3

We are setting up such calculations now, but will end o
discussion by noting two cases where the quantum valu
theh parameter is already known. To understand the conn
tions note that, by Gauss’s law,^E2& of the nonretarded
problem obeys (]/]x)^E2&54p^r2&, so we may rewrite Eq
~55! as

h5rbE dx x̂ r2&/us1u2. ~59!

There exists a special case where the required perturbed
sities can be exactly calculated: a single, isolated surface
parabolically confined electron gas.27 For this special barrier
the d parameters vanish at all frequencies, and the seco
harmonica parameter is exactly22. From Eq.~59! we ob-

tain the additional exact resulth(v)52 1
4 . This implies, via

Eq. ~58!, thatGx
(p) for this system is given by the momentum

balance result,Gx
(p)5(11R(p))cos2 u, with no surface-

sensitive corrections.
The other case where we can relateh to known results is

in the low-frequency limit. Asv→0, it does not matter
R

-

its

et
4

s
,

f
ic

r
of
c-

en-
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d-

whether one is calculatingr2 at 2v or static. We can hence
relateh to the a parameter of second-harmonic generati
@noting Ref. 16 and Eq.~CS-15!#:

h~v50!5 1
8 a~v50!. ~60!

From Table I in Ref. 3, which listsa(v50) for various
models, we see that our hydrodynamic results are too sm
in magnitude by about a factor of 100. Using better~more
negative! values ofh from the quantum evaluations of den
sity response will makeGx

(p),0, at least over a range of low
frequencies and at larger angles of incidence. This s
change arises from short-range forces near the surface
v50, j 1 vanishes so the only driving term in Eq.~53! is
1(b0

2/6r0)(]/]x)^r1
2&, which is strictly positive in a one-

step hydrodynamic model. This leads in turn to a negat
^E2&, which means that, in second-order, electrons have b
pulled toward the surface by the light; i.e., in the oppos
direction from what one expects due to radiation pressu
The hydrodynamic model obtains the right sign of this effe
but badly underestimates its magnitude.3,28

D. Conclusions

Our various model calculations have shown that sim
estimates from momentum balance arguments can give e
results in special cases. However, there are also situat
where their predictions are qualitatively wrong. For instan
a suitable variation of the electron relaxation rate as a fu
tion of depth into the metal can lead to a reversed direct
for the surface-parallel current. With the emf induced alo
the surface normal, the sign and magnitude of the effect
sensitive function of the equilibrium electron-density profi
and microscopic quantum-mechanical calculations will
needed to give reliable predictions. These should be tract
with the h-parameter approach we have outlined.
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