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Theory of the photon-drag effect in simple metals
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We derive and evaluate a quantum mechanical, self-consistent field theory of the photon-drag effect in
simple metals. The calculation of the induced voltage across a flat surface illuminated with light is based on a
scheme that allows the separate treatment of contributions that depend on bulk or surface response properties.
The microscopic theory uses the time-dependent local density-functional approach in a numerical formulation
similar to that for second harmonic generation, but incorporates finite damping. The results show a consider-
able sensitivity to the surface behavior of the responding electrons, with the strength of the surface contribution
increased by two orders of magnitude compared to an earlier hydrodynamic estimate.

[. INTRODUCTION as 1f is spatially constant, should be accurate to within a
few percent. Specifically, corrections due to nonlocal optics
In this paper we complete the development of a theory oshould not be significarit.
photon-drag effects in simple metals. Our goal has been to Matters are different for the induced voltage across the
derive results at the same level of sophistication and accwsurface. This is defined b{AE) = — [dX(Ej,q), where(E;.q)
racy as has been worked out for second harmonic generatiaa the time-averaged field normal to the surface produced at
(SHG).12 Many of the details are quite different because thesecond order by the charge redistribution. Under the same
experimental phenomena are so distinct. For SHG one seekssumptions that lead to E(l) we showed that
to describe radiation patterns, while photon drag involves dc
effects: induced currents and voltages. Still there are funda- (AE)= QF @
mental similarities in their analysis because both sets of phe- n,ec *’
nomena arise from the second-order response of electrons o , o
near an interface to an applied field. with T'{® = (14 Ry)cog6 for swaves while forp polarization
In an earlier papérwe examined photon-drag effects

within a hydrodynamic model of the electrons’ dynamics. IP=(1+Rp)co0+ (3 +2h)|t,sind(e,— 1> (3

Such a model is crude but tractable and allowed us 10 apygpe €, is the bulk dielectric functiont, the Fresnel trans-

proach the problem at different levels of apprOX|mat|on.mfission amplitude for @ wave, anch a real-valued dimen-

From this_analysis we .eStab lished the reaso_nable aceuracy ginjess parameter that requires microscopic evaluation. Ex-
the following parametrization scheme. Consider a wide beargept for h, the ingredients of Eq(2) are just as easy to
of monochromatic light incident at angfeon a flat surface  50jate as those in E¢L) and the accuracy should also be
of jellium metal. A steady current flowing parallel 1o the ;¢ 1o few percent level. The parametehowever, requires
surface is induced, along with a (_jc voltage Q|fference along, noniocal response calculation and its magnitude is quite
the surface normal. If the_ resistive scattering rate for the'sensitive to the microscopic description of the surface.
electrons does not vary with position near the surface, theé |\, o< further demonstrated in Ref. 3 themnay be found
Eme—averagbedfcurrgr;t Fr%e‘{ unit widtbf the incident light  ¢o 5 one-dimensional, electrostatic calculation. Consider
eam may be found fro the application of an electric field along the surface normal,
with a spatially uniform amplitud&, and frequencyn. The
S electrons’ response to this field will produce at first order an
f dX<J>:UO<Q)Singcose(l_R), (1) induced gurface charge dens.ity[la@e*"“‘.] and at second
npec order an induced density profile from which one extracts the
time-averaged, but spatially varying pap,(x)). Thenh is

iven b
where(S) is the time-averaged incident Poynting flikthe given by

light's reflection coefficient, and-, the metal’s dc conduc-

tivity, oo=npe?r,/m with n, and 1f, the bulk electron h:enbf dxx(pa(X))/| o] 4
density and scattering rate, respectively. The other variables

in Eq. (1) are fundamental constants for an electres;0  Throughout this recipe fon, one may set— and ignore
andm, and the speed of light. The variable of integration, magnetic fields. Thus a nonretarded, density response calcu-
X, represents the normal coordinate. The reflection coefficieration suffices to determinle and the result depends only on
depends on the polarization of the light and may be calcuw, and not oné. Within the hydrodynamic model we
lated from classical(local) optics. The contributions to checked that this relatively simple prescription can reason-
Jdx(J)) from s- and p-polarized light add without interfer- ably reproduce a full evaluation at?) 3 Since the impor-
ence. Equationil) is straightforward to evaluate and, as long tance of retardatio«finite c) should not depend on whether
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one is using hydrodynamics or quantum mechanics to detion formula for the correlation paftNote thatu,. in Eq. (6)

scribe the near-surface response, we shall use here the pis-a local but nonlinear function of the electron density.

scription (4) in a quantum mechanical calculation. Our aim is to use perturbation theory to calculate induced
The spirit of our approach is very similar to that used indensities and for that we need to sepandtato pieces of

second harmonic generation, where in the simplest jelliundifferent order in the applied field, whose strengttEjgt).

model the full result is determined by several macroscopidVe write

parameters €, e€,, polarization and one complex-valued,

dimensionless parameter which is sensitive to the micro- i

scopic surface physics. This parameter is caflehd in our V(x,t)=2i Vi(x’t)zzi e‘Pi(X’t)Jrzi “ig(x’t)’ ©)

notation it is determined by

with i=0,1,2.... At zeroth order the potential energy is
time independent wit determined by the total charge
a:8enbj dXXpZ(X,Zw)/O'i, (5) density p hpo y g
wherep,(X,2w) is the complex amplitude of the nonretarded ngt)(X)ZPo(X) —eny6(x), (10

induced charge density at second order with frequensy 2 o o

The justification for this recipe also comes from hydrody-wheree<0 and the(positive) jellium background sits irx

namic model calculatior’sThe equation whera appears in  >0. The other contribution t¥y(x) is

SHG (Refs. 1, 2, % is quite different in form from Eqgs. ©

(2),(3) whereh appears, but the similarity of Eq&s),(5) is My (X) =y No(X) 1, (11)

obvious and shows why the surface sensitivity of photon . .

drag and SHG should bg essentially the same.y P whereno(x) = po(x)/€ is the ground state density of the elec-
So to complete our theory we need a microscopic,ggrr::i'stgr?ce issgllffai:]gng’l?y an iterative loop until self-

guantum-mechanical calculation kof This will be done here At first oyrder one has‘

within a time-dependent local density-functional approxima-

tion (TDLDA). In Sec. Il we describe the formal response (1) _

theory and how we set up its numerical evaluation. Detailed Mxe (X, 1) = pyc(X)pr(X,t)/ e, (12)

results are shovyn in Sec. Il and we epd in Sec. v with awherepu, (x) = (9% dn?)(ne,), evaluated ah=ny(x). The

comparison of different microscopic estimateshofrhis pa-  Hartree potential has contributions from both the applied

per is focused on a particular calculational scheme. For geld E,(t) and the field produced by the first-order charge
broader perspective on the photon-drag problem, the readggnsity, p,(x,t):

can consult Ref. 3 for citations that survey earlier work. Pa-

pers published since then include Refs. 6—8 but these mainly ) ) )
address photon-drag currents in quantum wells. p1(x,t)= _XEA(t)_Z'ﬁf dx’[x=x"[pa(x",t)
Xc
Il. THEORY ~—inn(t)+47rJ dx’ (x—x")py(x',t). (13)
X

A. Density-functional response

By using density-functional theory we are led to calcula-The ~ in the second line means that we have dropped a
tions of how a single electron moves in an effective potentiafonstant contribution, which cannot change the response.

energyV (Ref. 9 TheE;, tha_t appears here is the e_Iectric_ field deep inside the
metal. We imagine that the metal is a thick slab that has been
V(X t)=ep(X,t)+ uyn(x,t)]. (6) inserted between théparalle) plates of a capacitor. The

charge on the capacitor plates produégs, whose value

For a jellium model and with the applied field normal to the goes not depend on the metal slab. The field near the center
surface,V depends only on the normal coordinatend the  qf the slab(at X, in our coordinatesis

time t. It has two distinct contributions. The first is from the
Hartree potential, which obeys Xo
Eln(t):EA(t)+47Tf dX,pl(X,,t):EA(t)+47T0'l(t)
2 Xy
E<p(x,t)= —4ap(X,t), (7) (14
X We assume the slab is thick enough thais negligible near

and is a linear but nonlocal function of the charge densityX.. It also vanishes neaq, , which is in the vacuum outside
The second is due to exchange and correlation effects and iBe metal but still between the capacitor plates. Although our
to be calculated from interest is in the induced charge density on the left side of the
slab (nearx=0), to derive Eq.14) one must acknowledge
d that a charge density of opposite sign is induced simulta-
Pxd NI = 7= (Nexc), @ neously €—x) on the right side of the slab.
At second order one has

wheree,. is the average exchange and correlation in a uni-
form electron gas of density. We use the standard Hartree- ,u)((%)(x,t)=,u)’(c(x)p2(x,t)/e+ s b (X[ pa(x,t)/e]?,
Fock result for the exchange p&rand Wigner's interpola- (15
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where ) (x) =(8°/dn%)(ne,.) evaluated an=ny(x). The 1 (ke
Hartree potential is determined solely by the electron charge X,(X,X, ,Xg; @, '“’B):_zj dk(kﬁ—kz)(Al+A2+A3),
density p,(X,t): w0

(21
Xe 1
@2(x,t)=4wf X’ (X—X) pa(X ). (1 Wit
" Ag=G* (X, Xy € H (= 0,1 ) 1(Xa) G X Xg s €4
To derive this result we have used the assumption that no net :
charge is induced in second order near either surface; i.e., (017 (Xp), (22
< Ao=h(X)G(X X o ; €t A(Q+2iy))G(Xo X g €
Lv dx'pz(x",)=0. 17 (st y)hdxg), (23

This assumption fails above the threshold for photoemission Az=h(X)G* (X, X, s €+ (—Q+2iy))
due to the outgoing stream of electrons that extends indefi- i .
nitely far into vacuum. We consequently shall not evaluate XG* (Xa Xpi &t (= 0ptiy)ihl(xp). (24
p» andh above the vacuum threshold. There is no such conThe Green’s functions that appear here and in @§) are
straint ona and SHG because a2 p, always vanishes in defined by
vacuum.

So far we have allowed for a general time dependence. G(x,X';et+ihy)=(x|(e+ifiy—hg) "Hx"), (25

Nogv \;\{e Sptec'ilr'lzg to tlhe dmonoc_rtl_romz_alt_trl]c fcafg(ty)t with hy the (one-dimensional, one-bogground state Hamil-
—7Ea€” COSwl With E4 réal andy posilive. 'he 1acloe™  qhian - A more practical representation is as
slowly turns on the perturbation, whose effect we examine

near t=0. We find at first order with p;(x,t) 2m
—3[pi(x,w)e” '+ pi(x,— w)e'']e”* and a similar form G(x,X'setifiy)=— &~ (X=) P~ (X)W, (26)
for V; that fi

where X _ is the greater(lessey of x,x’ and W is the

pl(X,w)Zef dx’ X (X, X" ;0)V1(X', ). (18)  Wronskian of the two solutions at the complex energy
+i#y which travel to the right ¢~) or to the left ¢#~). As
iK H —iK
The linear response matrix at zero temperature is determinefi— Xc: ‘/’:(X)_’e' < while asx—x,, ¢/<2(x)—>e B
Here 712KZ/2m+ Vo (x.) = e+ifiy while £2K2/2m+V(x,)

b
Y =e+ify, and bothK. and K, have positive imaginary
1 (ke parts.
Xi(X, X" ;0) = —zf dk(k2— K?) ¢h(X) (X[ G(X,X"; €, The numerical evaluation of Eq€l8)—(26) is a long, de-
mJ0 tailed process and we checked at several stages that our re-

. * , ; sults are consistent with the pioneering calculations of
th(o+iy)+ G X et hi(—o+iy))], Feibelman® (at first ordey and Liebsch? (at second order
(199  Our approach differs from theirs in one important way. The
. _ damping parametey is not treated as infinitesimally small,
where ke is the Fermi wave vectory,(x) a (real-valued  pt instead is set to a few percent ef/f. This causes
occupied wave function for motion alongand energyex  Friedel oscillations to damp more quickly as one moves into
<eg, the Fermi energy, anG a one-body Green’s function he pylk, which in turn stabilizes the numerics. The introduc-
(see below For second order matters are more complicatedjop, of 4, has the mathematical effect of making us calculate
since the response is at bothl=2w and Q=0. 4t complex-valued energies. The bulk dielectric function un-
We write py(X,t)— pa(x,00*"+ 5[ po(x,20)€ '+ pa(X,  der this approximation appears as
—2w)e?“]e?" wherep,(x,0) is real and the complex am-
plitudes obey p,(x,—2w) = p3 (x,20).*> Then response ep(w)=1— 0wl (0+iy)?, (27

theory leads t5"1* _
where the square of the plasma frequency a%

p2a(X,Q=w,+ wp) =4mn,e?/m. For y<w we can write
ep(0>y)=1- 0/ w(w+2iy)], (27")
=ef dX' X (XX 1 Q)Vo(x', Q) i P
which is the Drude form with scattering rater&2vy. So
from this point of view, finitey is allowing for incoherent

e
+Z 2 fdxaf dXgXo(X, Xy X5 W4, @p) scattering. However, the global replacement: w+ivy is
P . .
not a consistent treatment of such scattetfhgor instance,
XV1(Xg,@4)V1(Xg,@p). (200 asw—0, oure,— + w3/ y?, while the Drudee,— +ic. The

numerical importance of such inconsistency is not clear. For
The sum onP is over permutations of the variable pairs the linear response parameter we find fofi v/ ez=0.02 es-
(Xq,0,) and Kz, wg) and the new response matrix is sentially the same results as those from codes where
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—0".21517 A5 we will discuss in Sec. Ill there is a greater d (% e a(mu) (X an
dependence oty in second-order quantities. §L O|Xﬂm)=fX dxn at +Jx dxrmﬁ
B. Sum rules _ fxcdxna(mv) B fxcdxm) d(nv)
XU (9t Xv (9X '

Using the equations above we have numerically evaluated
p2(%,Q) near the jellium surface. However, the calculation (33
of horafrom Eqgs.(4) or (5) is generally not reliable because ] ) )
of long-ranged Friedel oscillations. Fortunately it is possibleVhere in the second line we have used the equation of con-
to relateh anda to alternate integrals that are more tractable finuity. Then integration by parts yields
We derive these here using the capacitor geometry.

The argument is based on calculating in different wiys d fxc 2% fxc J J
. — =— + —+v—
the (second-orderforce per unit area on the left half of the dtJy, dxnmy mnv |Xv X, dxn at Y ax (mw)
jellium slab. We first writef , using the total electric field as
X
= —mnbv§+f cdantot. (34)
XU

Xc Xc Jd
f2=f de2<x><—e>nb=enbj dx 22 (), (29) o
0 0 IX Here we have replaced the totabnvective time derivative

of mv by Fy, the total force on an electron atThe veloc-
where we have suppressed time arguments for the seconilly of the electron fluid ak. can be found from the rate of
order amplitudesE, and ¢,. From Poisson’s equation one change of the number of electrons on the left,
can replace

N, =2 f “dxp, le= 35
a(PZ < dt 1_dt %, Xp1 €= nva' ( )
W(X): —477f dx’ ps(x"), (29
*o Now we use EQq(34) at second order to reexpress Eq.
(32 as
wherex, is outside the metal. Because of Efj7), d¢,/dx
vanishes near botk, andx.. Substituting Eq(29) into Eqg. d (2)
(28) and reversing the integration order yields Af,=— E(E p) —Amnpi+ > FO,
Xc Xc Xc Xc
f2=47-renbj dX'X'pZ(X’)=mw§f dx'x"ny(x"). +AL dXPlEA+AjX AXMoF ey (36)
0 0 v v

30 »
(30 The last three terms here are additional forces that act on the

o electrons on the left side of the slab. For a complete TDLDA

The alternate route tb, writes it as the sum of the forces cajculationF ., vanishes, but if one omits exchange and cor-
exerted by all the electrons in the slab on the nugediium)  relation terms while calculating the first- and second-order
on the left side of the slab: responses, it is needed. We call such a calculation
RPA for random phase approximation and one has

. FRPA=—5uD/ox.22? Since E, is spatially constant,
A= F&h D fXdxp,En=01EA. The term with electron-electron forces

nearly cancels out by action-reaction, except for the force on
whereA is the slab’s area. Using Newton’s third law and Eq.the first-order electron disturbance on the left due to the field
(17), which implies that the second-order disturbance ofE}~' produced by the first-order electron disturbance on the
electrons on the leftright) can produce no electric field nor right:
feel a net force from charges on the ridhgft), we obtain

2 F@ o= 0iEy '=2m0d. (37

Afp=—2 Fh e - (32
Finally one may replace in second order(d/dt)(=p)®
. =—(d¥dt?)(Emx)?.
This expresses Af; as the sum of forces exerted by all the 14 proceed further we need to be specific about the time
nuclei (jellium) on the electrons on the left side of the slab. yenendencies. At first order we focus on quantities that vary

We next want to reexpress E(2) using Newton’'s sec- atm=w+iv. Then we can use Gauss's law to relfite to
ond law, but must be careful with its form since the number®. @~ “™!7

of electrons on the left is changing in time. Begin with thethe complex amplituder,,
sum of the (left-side electrons’ momenta: (A)Zp

_ X 1 1

—fxzdxnm;. Since bothn andv are space and time depen- 4o, =E;—E =E,4

dent,

i_]_)__—EA (39)
€p

C(1-wYed)
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Moving to second order, we begin with SHG, where we seek

the amplitude ofe™ 't with {0=2w. Combining Eq.(30)
and (36),

~ XC
(mwg—mﬂz)f dxxm(x)

5 [© o'i 4,
=Moy dxxnz(x)+? — 0 27 —4m
Xy wy
»? Xe
X _w_;‘; +fxvdxn2Fext. (39

The contributions in the square brackets simplify}
——2m(1-0%w}) so

X

0 X¢
f dxxrg(x)+j dxnzFext/mwS>.
XU XU

(40)
Comparing with Eq(5) we find the sum rule result

02

02\ "t o
1-— (L dxxp,(X,€)

Wy

a=—2+8

Xc
+f deZ(x,Q)Fext(x)/mwf,)enb/o§. (41)
Xl)

This is equivalent to the result in Ref. 2 and corrects th
formula in Ref. 118

but at second order we need the amplitudceﬁilﬁt with O
=2ivy. The only formal change in E¢39) is with the square
bracket terms which become real valued:

lol|?| 47 - 5 2
> ——2|w| +27—4mRe 1-——
® ®
p p
QZ
4>—’7T|0'1|2(1——). (42

Then a comparison with Ed@4) yields the sum rule foh,

—1 o

il

“dXpo(X,0)F o X) /M2

v

4 2
142
@Wp

1
=——4

h=-3

- dXsz(X,O)

v

X
l
X

As w—0, ps(X,20)— p,(x,0), andh—a/8.% Furthermore,
in a system that is strongly charged positiye, becomes
negligibly small beforex has decreased to zero, ke-a/8

——1/4 for all frequencies(below the photoemission t
threshold.

)enb/|al|2. (43
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FIG. 1. Photon-draf parameter versus frequency normalized to
the bulk plasma frequency,. The vertical lines locate the work
function for the different values af; .

IIl. RESULTS

We begin with the overview of Fig. 1 which shows the
photon dragh parameter evaluated from E@4) as a func-
tion of the incident photon frequency for a sequence of met-
als. The (dimensionless bulk density paramet&t rq
=2,3,4,5 and in each case the damping is fixed yat
=0.02/%. Results are shown only for frequencies up to
the work function, which ranges from 3.9 eV fiay=2 down
to 2.7 eV forrg=>5. Over this rangeh shows remarkably
little structure, simply decreasing monotonically from its
zero frequency limit. We expect thatdiverges at the pho-
toemission threshold, but since the calculations are done with
a fixed vacuum cutofkgx,>—15, we do not pick up the

Sudden onset of this divergence. Corresponding plots of the

SHG a parameter show considerably more structifrén

epart because the SHG response involves @mponents
while photon drag probes behavior only @atand dc. Also,

the a parameter spectrum extends beyond the photoemission
threshold.

Moving back in the calculation, we show in Fig. 2 profiles

0.50

0.25 -

0.00

-0.25

-0.50 -

PPk, 617

=0.75 -

=5 30 35 40

FIG. 2. Charge density from the nonretarded response calcula-
ion for r¢=2 at several frequencies of the applied field. The work

function is about 0.28,, for r =2.
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FIG. 3. Photon-drab parameter versus frequency normalizedto  FIG. 4. Charge densities from nonretarded response calculations
the bulk plasma frequenay, . Herer =2 and the global damping for r¢=2, #y/e=0.02, andw/w,=0.1. Theh parameter that re-
has the listed values. The use of E4¢) is especially important for  sults from each calculation is also given.
the i y=0.001e¢ case.

there is more sensitivity to the choice pfat larger frequen-

of the induced densitp,(x,0)=(p,) that underlie the deter- cjes. The general magnitude and frequency dependente of
mination of h. The damping parameter is still 2% of the g not, however, depend on the choicejof

Fermi frequency and the induced charge disturbances are
fairly well localized near the surface. The tail of Friedel os-
cillations is largely set by the static screening mf(x,0) IV. COMPARISONS

since it oscillates at B-. We have yarie_d the bulk cutoff We finish by showing that different models of the elec-
over the range 68kpx.<150, and find little effect on the rons’ pehavior near the surface lead to quite different re-
results. The numerical integral deTz(O)Zfijprz(X,O) sults. Figure 4 shows the photon-drag charge density deter-
nearly vanishes. Specifically we find thatr,(0)/ mined_ in three separate ways for the same bqu_density,
fﬁjdx|p2(x,0)| does not exceed a few percent for this case o/@Mping, and applied frequency. The LDA curve is from

. . , Fig. 2 while the hydrodynamic result is produced from the
bulk density and damping. The,(x,0) do not dramatically heory of Ref. 3. We calculated the curve for the infinite

change their shape as the driving frequency increases up {rier modekIBM) as a preliminary to setting up the LDA
the photoemission threshold. There is also no qualitative difyqqel4 For the IBM. the ground state potential eneMyis
ference between LDA and RPA restifs. modeled by an infinite barrier located a distanee/8ky be-

_Atlargerr or smaller damping our computer codes havey,nq the edge of the jellium and its eigenstates are pure sine
d|ff|cullt|es, pnma_nl_y due to the long range of Coulomb in- \\2ves This makes a RPA calculation of its response
teractions and driving termié.However, we have been able straightforward. The remarkable feature of Fig. 4 is how

to reduce the anomalies by rescaling or shifting intermediate, e the differences are between the predictions of the three
results in order to satisfy exact criteria. For instance, in linear

response we find that our numericay does not exactly p
satisfy EQ.(38), missing at worst by a few percent. Before
calculatingV, andV, and proceeding to the second-order NI T —
calculation we rescalg,(X,w) so that its integral ovex N Tv~el T
exactly matches Eq38). For the second-order response we \\ //
similarly find that our computed, does not satisfy Eq17). ad N 7
The resulting net charge on the surface can make the calcu_ | \\ /
lation of h or a unreliable. To remedy this error, we subtract I -0} 0 /
from the computegh, a constant multiple op, evaluated at \ /
Q: 5T N /
—— h=-1/36 \ /
] _ _ . e b= =116 \ 7
pS™(x, D) = po(x,0) = Np1(x, Q). (44 @ RN

The parametex is chosen so the “improved” version of the - ‘ .
second order densitypi™", exactly satisfies Eq(17). y 15 % i ) 7 %
These modifications are of little consequence for larger val- 0 (degrees)
ues of the damping, say/ez>0.02 forrs=2, but are cru- FIG. 5. Dimensionless voltage{” versus incident anglé for

cial for allowing us to obtain a smooth and reasonable dep-polarized light. The light frequency is/w,=0.1 and the damp-

pendence of our results gs—0. The final results foh are  ing is y/w,=0.015. The different curves are calculated from Eq.
roughly linear iny, as illustrated in Fig. 3, which shows that (3) using the listed values df.
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models. The hydrodynamije, has a discontinuity at the sur- size ofh from hydrodynamic or IBM calculations, the volt-
face and of course lacks Friedel oscillations as one movesage’s sign never changes but the LDA results found here do
into the bulk. Its magnitude is also much smaller than eithetead to predicted sign changes. The experimental observation
of the two quantum mechanical results. The two quantunof such behavior would be an important confirmation of the
results also differ considerably from each other. The LDAcontribution ofh, which in turn should exhibit a strong de-
induced charge density is pulled much farther into vacuunpendence on surface conditions.
and has stronger Friedel oscillations into the bulk. Clearly,
p» is highly sensitive to the ground state density model, as
expected:®

The associated values bfare also very different. For the Some of the calculations were done on the Cray Research
LDA case,h is sufficiently negative to be able to change thelnc. T90 system at NPACI in San Diego, California. This
sign of the induced voltage across the surface. This is illuswork was also partially supported by the National Computa-
trated in Fig. 5, which plotff(p) of Eq. (3) versus the angle tional Science Alliance under Grant No. PHY 990009N and
of incidence for several possible valuestofFor the typical utilized the NCSA SGI/Cray Origin 2000.
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