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Theory of the photon-drag effect in simple metals

John Eric Goff and W. L. Schaich
Department of Physics, Indiana University, Bloomington, Indiana 47405

~Received 2 July 1999!

We derive and evaluate a quantum mechanical, self-consistent field theory of the photon-drag effect in
simple metals. The calculation of the induced voltage across a flat surface illuminated with light is based on a
scheme that allows the separate treatment of contributions that depend on bulk or surface response properties.
The microscopic theory uses the time-dependent local density-functional approach in a numerical formulation
similar to that for second harmonic generation, but incorporates finite damping. The results show a consider-
able sensitivity to the surface behavior of the responding electrons, with the strength of the surface contribution
increased by two orders of magnitude compared to an earlier hydrodynamic estimate.
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I. INTRODUCTION

In this paper we complete the development of a theory
photon-drag effects in simple metals. Our goal has bee
derive results at the same level of sophistication and ac
racy as has been worked out for second harmonic genera
~SHG!.1,2 Many of the details are quite different because
experimental phenomena are so distinct. For SHG one s
to describe radiation patterns, while photon drag involves
effects: induced currents and voltages. Still there are fun
mental similarities in their analysis because both sets of p
nomena arise from the second-order response of elect
near an interface to an applied field.

In an earlier paper3 we examined photon-drag effec
within a hydrodynamic model of the electrons’ dynamic
Such a model is crude but tractable and allowed us to
proach the problem at different levels of approximatio
From this analysis we established the reasonable accura
the following parametrization scheme. Consider a wide be
of monochromatic light incident at angleu on a flat surface
of jellium metal. A steady current flowing parallel to th
surface is induced, along with a dc voltage difference alo
the surface normal. If the resistive scattering rate for
electrons does not vary with position near the surface,
time-averaged current per unit width~of the incident light
beam! may be found from3,4

E dx^Ji&5s0S ^S&
nbecD sinu cosu~12R!, ~1!

where^S& is the time-averaged incident Poynting flux,R the
light’s reflection coefficient, ands0 the metal’s dc conduc
tivity, s05nbe2tb /m with nb and 1/tb the bulk electron
density and scattering rate, respectively. The other varia
in Eq. ~1! are fundamental constants for an electron,e,0
andm, and the speed of lightc. The variable of integration
x, represents the normal coordinate. The reflection coeffic
depends on the polarization of the light and may be ca
lated from classical~local! optics. The contributions to
*dx^Ji& from s- and p-polarized light add without interfer
ence. Equation~1! is straightforward to evaluate and, as lon
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as 1/t is spatially constant, should be accurate to within
few percent. Specifically, corrections due to nonlocal opt
should not be significant.3

Matters are different for the induced voltage across
surface. This is defined bŷDE&52*dx^Eind&, where^Eind&
is the time-averaged field normal to the surface produce
second order by the charge redistribution. Under the sa
assumptions that lead to Eq.~1! we showed that3

^DE&5
^S&

nbec
Gx , ~2!

with Gx
(s)5(11Rs)cos2u for s waves while forp polarization

Gx
(p)5~11Rp!cos2u1~ 1

2 12h!utp sinu~eb21!u2. ~3!

Hereeb is the bulk dielectric function,tp the Fresnel trans-
mission amplitude for ap wave, andh a real-valued dimen-
sionless parameter that requires microscopic evaluation.
cept for h, the ingredients of Eq.~2! are just as easy to
calculate as those in Eq.~1! and the accuracy should also b
at the few percent level. The parameterh, however, requires
a nonlocal response calculation and its magnitude is q
sensitive to the microscopic description of the surface.

It was further demonstrated in Ref. 3 thath may be found
from a one-dimensional, electrostatic calculation. Consi
the application of an electric field along the surface norm
with a spatially uniform amplitudeEA and frequencyv. The
electrons’ response to this field will produce at first order
induced surface charge density Re@s1e2 ivt# and at second
order an induced density profile from which one extracts
time-averaged, but spatially varying part^r2(x)&. Thenh is
given by

h5enbE dxx̂ r2~x!&/us1u2. ~4!

Throughout this recipe forh, one may setc→` and ignore
magnetic fields. Thus a nonretarded, density response ca
lation suffices to determineh and the result depends only o
v, and not onu. Within the hydrodynamic model we
checked that this relatively simple prescription can reas
ably reproduce a full evaluation ofGx

(p) .3 Since the impor-
tance of retardation~finite c) should not depend on whethe
10 471 ©2000 The American Physical Society
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10 472 PRB 61JOHN ERIC GOFF AND W. L. SCHAICH
one is using hydrodynamics or quantum mechanics to
scribe the near-surface response, we shall use here the
scription ~4! in a quantum mechanical calculation.

The spirit of our approach is very similar to that used
second harmonic generation, where in the simplest jelli
model the full result is determined by several macrosco
parameters (u, eb , polarization! and one complex-valued
dimensionless parameter which is sensitive to the mic
scopic surface physics. This parameter is calleda and in our
notation it is determined by

a58enbE dxxr2~x,2v!/s1
2 , ~5!

wherer2(x,2v) is the complex amplitude of the nonretard
induced charge density at second order with frequencyv.
The justification for this recipe also comes from hydrod
namic model calculations.5 The equation wherea appears in
SHG ~Refs. 1, 2, 5! is quite different in form from Eqs.
~2!,~3! whereh appears, but the similarity of Eqs.~4!,~5! is
obvious and shows why the surface sensitivity of pho
drag and SHG should be essentially the same.

So to complete our theory we need a microscop
quantum-mechanical calculation ofh. This will be done here
within a time-dependent local density-functional approxim
tion ~TDLDA !. In Sec. II we describe the formal respon
theory and how we set up its numerical evaluation. Deta
results are shown in Sec. III and we end in Sec. IV with
comparison of different microscopic estimates ofh. This pa-
per is focused on a particular calculational scheme. Fo
broader perspective on the photon-drag problem, the re
can consult Ref. 3 for citations that survey earlier work. P
pers published since then include Refs. 6–8 but these ma
address photon-drag currents in quantum wells.

II. THEORY

A. Density-functional response

By using density-functional theory we are led to calcu
tions of how a single electron moves in an effective poten
energyV ~Ref. 9!

V~x,t !5ew~x,t !1mxc@n~x,t !#. ~6!

For a jellium model and with the applied field normal to t
surface,V depends only on the normal coordinatex and the
time t. It has two distinct contributions. The first is from th
Hartree potential, which obeys

d2

dx2
w~x,t !524pr~x,t !, ~7!

and is a linear but nonlocal function of the charge dens
The second is due to exchange and correlation effects an
to be calculated from

mxc@n#5
]

]n
~nexc!, ~8!

whereexc is the average exchange and correlation in a u
form electron gas of densityn. We use the standard Hartre
Fock result for the exchange part10 and Wigner’s interpola-
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tion formula for the correlation part.9 Note thatmxc in Eq. ~6!
is a local but nonlinear function of the electron density.

Our aim is to use perturbation theory to calculate induc
densities and for that we need to separateV into pieces of
different order in the applied field, whose strength isEA(t).
We write

V~x,t !5(
i

Vi~x,t !5(
i

ew i~x,t !1(
i

mxc
( i )~x,t !, ~9!

with i 50,1,2, . . . . At zeroth order the potential energy
time independent withw0 determined by the total charg
density

r tot
(0)~x!5r0~x!2enbu~x!, ~10!

wheree,0 and the~positive! jellium background sits inx
.0. The other contribution toV0(x) is

mxc
(0)~x!5mxc@n0~x!#, ~11!

wheren0(x)5r0(x)/e is the ground state density of the ele
trons. One solves forn0 by an iterative loop until self-
consistency is obtained.2,9,11

At first order one has

mxc
(1)~x,t !5mxc8 ~x!r1~x,t !/e, ~12!

wheremxc8 (x)5(]2/]n2)(nexc), evaluated atn5n0(x). The
Hartree potential has contributions from both the appl
field EA(t) and the field produced by the first-order char
density,r1(x,t):

w1~x,t !52xEA~ t !22pE dx8ux2x8ur1~x8,t !

;2xEin~ t !14pE
x

xc
dx8~x2x8!r1~x8,t !. ~13!

The ; in the second line means that we have droppe
constant contribution, which cannot change the respo
The Ein that appears here is the electric field deep inside
metal. We imagine that the metal is a thick slab that has b
inserted between the~parallel! plates of a capacitor. The
charge on the capacitor plates producesEA , whose value
does not depend on the metal slab. The field near the ce
of the slab~at xc in our coordinates! is

Ein~ t !5EA~ t !14pE
xv

xc
dx8r1~x8,t !5EA~ t !14ps1~ t !.

~14!

We assume the slab is thick enough thatr1 is negligible near
xc . It also vanishes nearxv , which is in the vacuum outside
the metal but still between the capacitor plates. Although
interest is in the induced charge density on the left side of
slab ~nearx50), to derive Eq.~14! one must acknowledge
that a charge density of opposite sign is induced simu
neously (c→`) on the right side of the slab.

At second order one has

mxc
(2)~x,t !5mxc8 ~x!r2~x,t !/e1 1

2 mxc9 ~x!@r1~x,t !/e#2,
~15!
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wheremxc9 (x)5(]3/]n3)(nexc) evaluated atn5n0(x). The
Hartree potential is determined solely by the electron cha
densityr2(x,t):

w2~x,t !54pE
x

xc
dx8~x2x8!r2~x8,t !. ~16!

To derive this result we have used the assumption that no
charge is induced in second order near either surface; i.

E
xv

xc
dx8r2~x8,t !50. ~17!

This assumption fails above the threshold for photoemiss
due to the outgoing stream of electrons that extends ind
nitely far into vacuum. We consequently shall not evalu
r2 andh above the vacuum threshold. There is no such c
straint ona and SHG because at 2v, r2 always vanishes in
vacuum.

So far we have allowed for a general time dependen
Now we specialize to the monochromatic caseEA(t)
→EAegt cosvt with EA real andg positive. The factoregt

slowly turns on the perturbation, whose effect we exam
near t50. We find at first order with r1(x,t)
→ 1

2 @r1(x,v)e2 ivt1r1(x,2v)eivt#egt and a similar form
for V1 that

r1~x,v!5eE dx8X1~x,x8;v!V1~x8,v!. ~18!

The linear response matrix at zero temperature is determ
by

X1~x,x8;v!5
1

p2E0

kF
dk~kF

22k2!ck~x!ck~x8!@G„x,x8;ek

1\~v1 ig!…1G* „x,x8;ek1\~2v1 ig!…#,

~19!

where kF is the Fermi wave vector,ck(x) a ~real-valued!
occupied wave function for motion alongx and energyek
,eF , the Fermi energy, andG a one-body Green’s function
~see below!. For second order matters are more complica
since the response is at bothV52v and V50.
We write r2(x,t)→r2(x,0)e2gt1 1

2 @r2(x,2v)e22ivt1r2(x,
22v)e2ivt#e2gt wherer2(x,0) is real and the complex am
plitudes obey r2(x,22v)5r2* (x,2v).12 Then response
theory leads to13,14

r2~x,V5va1vb!

5eE dx8X1~x,x8;V!V2~x8,V!

1
e

4 (
P

E dxaE dxbX2~x,xa ,xb ;va ,vb!

3V1~xa ,va!V1~xb ,vb!. ~20!

The sum onP is over permutations of the variable pai
(xa ,va) and (xb ,vb) and the new response matrix is
e

et
,

n
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X2~x,xa ,xb ;va ,vb!5
1

p2E0

kF
dk~kF

22k2!~A11A21A3!,

~21!

with

A15G* „x,xa ;ek1\~2va1 ig!…ck~xa!G„x,xb ;ek

1\~vb1 ig!…ck~xb!, ~22!

A25ck~x!G„x,xa ;ek1\~V12ig!…G„xa ,xb ;ek

1\~vb1 ig!…ck~xb!, ~23!

A35ck~x!G* „x,xa ;ek1\~2V12ig!…

3G* „xa ,xb ;ek1\~2vb1 ig!…ck~xb!. ~24!

The Green’s functions that appear here and in Eq.~19! are
defined by

G~x,x8;e1 i\g!5^xu~e1 i\g2h0!21ux8&, ~25!

with h0 the~one-dimensional, one-body! ground state Hamil-
tonian. A more practical representation is as

G~x,x8;e1 i\g!5
2m

\2
c.~x.!c,~x,!/W, ~26!

where x.,
is the greater~lesser! of x,x8 and W is the

Wronskian of the two solutions at the complex energye
1 i\g which travel to the right (c.) or to the left (c,). As
x→xc , c.(x)→eiK cx while as x→xv , c,(x)→e2 iK vx.
Here \2Kc

2/2m1V0(xc)5e1 i\g while \2Kv
2/2m1V0(xv)

5e1 i\g, and bothKc and Kv have positive imaginary
parts.

The numerical evaluation of Eqs.~18!–~26! is a long, de-
tailed process and we checked at several stages that ou
sults are consistent with the pioneering calculations
Feibelman15 ~at first order! and Liebsch1,2 ~at second order!.
Our approach differs from theirs in one important way. T
damping parameterg is not treated as infinitesimally smal
but instead is set to a few percent ofeF /\. This causes
Friedel oscillations to damp more quickly as one moves i
the bulk, which in turn stabilizes the numerics. The introdu
tion of g has the mathematical effect of making us calcul
at complex-valued energies. The bulk dielectric function u
der this approximation appears as

eb~v!512vp
2/~v1 ig!2, ~27!

where the square of the plasma frequency isvp
2

54pnbe2/m. For g!v we can write

eb~v@g!'12vp
2/@v~v12ig!#, ~278!

which is the Drude form with scattering rate 1/t52g. So
from this point of view, finiteg is allowing for incoherent
scattering. However, the global replacementv→v1 ig is
not a consistent treatment of such scattering.16 For instance,
asv→0, oureb→1vp

2/g2, while the Drudeeb→1 i`. The
numerical importance of such inconsistency is not clear.
the linear responsed parameter we find for\g/eF&0.02 es-
sentially the same results as those from codes wherg
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10 474 PRB 61JOHN ERIC GOFF AND W. L. SCHAICH
→01.2,15,17 As we will discuss in Sec. III there is a great
dependence ong in second-order quantities.

B. Sum rules

Using the equations above we have numerically evalua
r2(x,V) near the jellium surface. However, the calculati
of h or a from Eqs.~4! or ~5! is generally not reliable becaus
of long-ranged Friedel oscillations. Fortunately it is possi
to relateh anda to alternate integrals that are more tractab
We derive these here using the capacitor geometry.

The argument is based on calculating in different waysf 2,
the ~second-order! force per unit area on the left half of th
jellium slab. We first writef 2 using the total electric field a

f 25E
0

xc
dxE2~x!~2e!nb5enbE

0

xc
dx

]w2

]x
~x!, ~28!

where we have suppressed time arguments for the sec
order amplitudesE2 and w2. From Poisson’s equation on
can replace

]w2

]x
~x!524pE

xv

x

dx8r2~x8!, ~29!

wherexv is outside the metal. Because of Eq.~17!, ]w2 /]x
vanishes near bothxv andxc . Substituting Eq.~29! into Eq.
~28! and reversing the integration order yields

f 254penbE
0

xc
dx8x8r2~x8!5mvp

2E
0

xc
dx8x8n2~x8!.

~30!

The alternate route tof 2 writes it as the sum of the force
exerted by all the electrons in the slab on the nuclei~jellium!
on the left side of the slab:

A f25( Fe on nl

(2) , ~31!

whereA is the slab’s area. Using Newton’s third law and E
~17!, which implies that the second-order disturbance
electrons on the left~right! can produce no electric field no
feel a net force from charges on the right~left!, we obtain

A f252( Fn on el

(2) . ~32!

This expresses2A f2 as the sum of forces exerted by all th
nuclei ~jellium! on the electrons on the left side of the sla

We next want to reexpress Eq.~32! using Newton’s sec-
ond law, but must be careful with its form since the numb
of electrons on the left is changing in time. Begin with t
sum of the ~left-side! electrons’ momenta: (1/A)(p
5*xv

xcdxnmv. Since bothn andv are space and time depe

dent,
d

e
.

d-

.
f

r

d

dtExv

xc
dxnmv5E

xv

xc
dxn

]~mv !

]t
1E

xv

xc
dxmv

]n

]t

5E
xv

xc
dxn

]~mv !

]t
2E

xv

xc
dxmv

]~nv !

]x
,

~33!

where in the second line we have used the equation of c
tinuity. Then integration by parts yields

d

dtExv

xc
dxnmv52mnv2uxv

xc1E
xv

xc
dxnS ]

]t
1v

]

]xD ~mv !

52mnbvc
21E

xv

xc
dxnFtot . ~34!

Here we have replaced the total~convective! time derivative
of mv by F tot , the total force on an electron atx. The veloc-
ity of the electron fluid atxc can be found from the rate o
change of the number of electrons on the left,

d

dt
N15

d

dtExv

xc
dxr1 /e52nbvc . ~35!

Now we use Eq.~34! at second order to reexpress E
~32! as

A f252
d

dt S ( pD (2)

2Amnbvc
21( Fe on el

(2)

1AE
xv

xc
dxr1EA1AE

xv

xc
dxn2Fext. ~36!

The last three terms here are additional forces that act on
electrons on the left side of the slab. For a complete TDLD
calculationFext vanishes, but if one omits exchange and c
relation terms while calculating the first- and second-or
responses, it is needed. We call such a calcula
RPA for random phase approximation and one h
Fext

(RPA)52]mxc
(0)/]x.1,2 Since EA is spatially constant,

*xv

xcdxr1EA5s1EA . The term with electron-electron force

nearly cancels out by action-reaction, except for the force
the first-order electron disturbance on the left due to the fi
E1

r→ l produced by the first-order electron disturbance on
right:

( Fe on el

(2) 5s1E1
r→ l52ps1

2 . ~37!

Finally one may replace in second order2(d/dt)((p)(2)

52(d2/dt2)((mx)(2).
To proceed further we need to be specific about the t

dependencies. At first order we focus on quantities that v
at ṽ5v1 ig. Then we can use Gauss’s law to relateEA to
the complex amplitudes1,

4ps15Ein2EA5EAS 1

eb
21D5

2EA

~12ṽ2/vp
2!

. ~38!
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PRB 61 10 475THEORY OF THE PHOTON-DRAG EFFECT IN SIMPLE METALS
Moving to second order, we begin with SHG, where we se
the amplitude ofe2 i Ṽt with Ṽ52ṽ. Combining Eq.~30!
and ~36!,

~mvp
22mṼ2!E

xv

xc
dxxn2~x!

5mvp
2E

xv

0

dxxn2~x!1
s1

2

2 F4p

vp
2
ṽ212p24p

3S 12
ṽ2

vp
2D G1E

xv

xc
dxn2Fext. ~39!

The contributions in the square brackets simplify:@ #

→22p(12Ṽ2/vp
2) so

E
xv

xc
dxxn2~x!52

1

4

s1
2

nbe2
1S 12

Ṽ2

vp
2 D 21

3S E
xv

0

dxxn2~x!1E
xv

xc
dxn2Fext/mvp

2D .

~40!

Comparing with Eq.~5! we find the sum rule result

a52218S 12
Ṽ2

vp
2 D 21S E

xv

0

dxxr2~x,V!

1E
xv

xc
dxr2~x,V!Fext~x!/mvp

2D enb /s1
2 . ~41!

This is equivalent to the result in Ref. 2 and corrects
formula in Ref. 1.18

For photon drag the first order ingredients are the sa
but at second order we need the amplitude ofe2 i Ṽt with Ṽ
52ig. The only formal change in Eq.~39! is with the square
bracket terms which become real valued:

us1u2

2 F2
4p

vp
2

uṽu212p24p ReS 12
ṽ2

vp
2D G

→2pus1u2S 12
Ṽ2

vp
2 D . ~42!

Then a comparison with Eq.~4! yields the sum rule forh,

h52
1

4
1S 11

4g2

vp
2 D 21S E

xv

0

dxxr2~x,0!

1E
xv

xc
dxr2~x,0!Fext~x!/mvp

2D enb /us1u2. ~43!

As v→0, r2(x,2v)→r2(x,0), andh→a/8.3 Furthermore,
in a system that is strongly charged positive,r2 becomes
negligibly small beforex has decreased to zero, soh→a/8
→21/4 for all frequencies ~below the photoemission
threshold!.3
k

e

e,

III. RESULTS

We begin with the overview of Fig. 1 which shows th
photon dragh parameter evaluated from Eq.~44! as a func-
tion of the incident photon frequency for a sequence of m
als. The ~dimensionless! bulk density parameter19 r s
52,3,4,5 and in each case the damping is fixed atg
50.02eF /\. Results are shown only for frequencies up
the work function, which ranges from 3.9 eV forr s52 down
to 2.7 eV for r s55. Over this rangeh shows remarkably
little structure, simply decreasing monotonically from i
zero frequency limit. We expect thath diverges at the pho-
toemission threshold, but since the calculations are done
a fixed vacuum cutoffkFxv.215, we do not pick up the
sudden onset of this divergence. Corresponding plots of
SHG a parameter show considerably more structure,1,2 in
part because the SHG response involves 2v components
while photon drag probes behavior only atv and dc. Also,
the a parameter spectrum extends beyond the photoemis
threshold.

Moving back in the calculation, we show in Fig. 2 profile

FIG. 1. Photon-dragh parameter versus frequency normalized
the bulk plasma frequencyvp . The vertical lines locate the work
function for the different values ofr s .

FIG. 2. Charge density from the nonretarded response calc
tion for r s52 at several frequencies of the applied field. The wo
function is about 0.23vp for r s52.
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10 476 PRB 61JOHN ERIC GOFF AND W. L. SCHAICH
of the induced densityr2(x,0)5^r2& that underlie the deter
mination of h. The damping parameter is still 2% of th
Fermi frequency and the induced charge disturbances
fairly well localized near the surface. The tail of Friedel o
cillations is largely set by the static screening ofr2(x,0)
since it oscillates at 2kF . We have varied the bulk cutof
over the range 60,kFxc,150, and find little effect on the
results. The numerical integral fors2(0)5*xv

xcdxr2(x,0)

nearly vanishes. Specifically we find thats2(0)/
*xv

xcdxur2(x,0)u does not exceed a few percent for this case

bulk density and damping. Ther2(x,0) do not dramatically
change their shape as the driving frequency increases u
the photoemission threshold. There is also no qualitative
ference between LDA and RPA results.14

At larger r s or smaller damping our computer codes ha
difficulties, primarily due to the long range of Coulomb in
teractions and driving terms.14 However, we have been abl
to reduce the anomalies by rescaling or shifting intermed
results in order to satisfy exact criteria. For instance, in lin
response we find that our numericals1 does not exactly
satisfy Eq.~38!, missing at worst by a few percent. Befo
calculatingV1 and V2 and proceeding to the second-ord
calculation we rescaler1(x,v) so that its integral overx
exactly matches Eq.~38!. For the second-order response w
similarly find that our computedr2 does not satisfy Eq.~17!.
The resulting net charge on the surface can make the ca
lation of h or a unreliable. To remedy this error, we subtra
from the computedr2 a constant multiple ofr1 evaluated at
Ṽ:

r2
(impr)~x,Ṽ!5r2~x,Ṽ!2lr1~x,Ṽ!. ~44!

The parameterl is chosen so the ‘‘improved’’ version of th
second order density,r2

(impr) , exactly satisfies Eq.~17!.
These modifications are of little consequence for larger v
ues of the damping, say,g/eF.0.02 for r s52, but are cru-
cial for allowing us to obtain a smooth and reasonable
pendence of our results asg→0. The final results forh are
roughly linear ing, as illustrated in Fig. 3, which shows tha

FIG. 3. Photon-dragh parameter versus frequency normalized
the bulk plasma frequencyvp . Herer s52 and the global damping
has the listed values. The use of Eq.~44! is especially important for
the \g50.001eF case.
re
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there is more sensitivity to the choice ofg at larger frequen-
cies. The general magnitude and frequency dependenceh
do not, however, depend on the choice ofg.

IV. COMPARISONS

We finish by showing that different models of the ele
trons’ behavior near the surface lead to quite different
sults. Figure 4 shows the photon-drag charge density de
mined in three separate ways for the same bulk dens
damping, and applied frequency. The LDA curve is fro
Fig. 2 while the hydrodynamic result is produced from t
theory of Ref. 3. We calculated the curve for the infin
barrier model~IBM ! as a preliminary to setting up the LDA
code.14 For the IBM, the ground state potential energyV0 is
modeled by an infinite barrier located a distance 3p/8kF be-
yond the edge of the jellium and its eigenstates are pure
waves. This makes a RPA calculation of its respon
straightforward. The remarkable feature of Fig. 4 is ho
large the differences are between the predictions of the th

FIG. 4. Charge densities from nonretarded response calcula
for r s52, \g/eF50.02, andv/vp50.1. Theh parameter that re-
sults from each calculation is also given.

FIG. 5. Dimensionless voltageGx
(p) versus incident angleu for

p-polarized light. The light frequency isv/vp50.1 and the damp-
ing is g/vp50.015. The different curves are calculated from E
~3! using the listed values ofh.
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models. The hydrodynamicr2 has a discontinuity at the sur
face and of course lacks Friedel oscillations as one mo
into the bulk. Its magnitude is also much smaller than eit
of the two quantum mechanical results. The two quant
results also differ considerably from each other. The LD
induced charge density is pulled much farther into vacu
and has stronger Friedel oscillations into the bulk. Clea
r2 is highly sensitive to the ground state density model,
expected.2,15

The associated values ofh are also very different. For the
LDA case,h is sufficiently negative to be able to change t
sign of the induced voltage across the surface. This is il
trated in Fig. 5, which plotsGx

(p) of Eq. ~3! versus the angle
of incidence for several possible values ofh. For the typical
-

.

-

es
r

,
s

s-

size ofh from hydrodynamic or IBM calculations, the volt
age’s sign never changes but the LDA results found here
lead to predicted sign changes. The experimental observa
of such behavior would be an important confirmation of t
contribution ofh, which in turn should exhibit a strong de
pendence on surface conditions.
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