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Abstract
The golden ratio appears in a classical mechanics coupled-oscillator problem
that many undergraduates may not solve. Once the symmetry is broken in a
more standard problem, the golden ratio appears. Several student exercises
arise from the problem considered in this paper.

1. Introduction

The golden ratio emerges in a variety of contexts, from art and architecture to nature and
mathematics. Examples where the golden ratio appears in physics include the study of the
onset of chaos [1] and certain resistor networks [2]. Of the scores of books devoted to the
golden ratio, we particularly enjoy Livio’s book [3].

The irrational number ϕ = (
√

5 + 1)/2 (ϕ = 1.618 03 . . .) is the golden ratio. Among
its many interesting properties is that its inverse is related to itself by ϕ−1 = ϕ − 1 (i.e.
ϕ−1 = 0.618 03 . . .). We will show in the next section that the golden ratio and its inverse
appear in the solution to the coupled oscillator problem illustrated in figure 1. Two identical
masses are allowed to oscillate while connected to two identical massless springs. The
oscillation takes place along a horizontal frictionless table. Finding normal modes and
corresponding frequencies is our goal.

We have seen the aforementioned problem as a homework problem in Taylor’s text [4],
though he does not mention the golden ratio1. The problem also appears in other books [5, 6],
except that it is turned 90◦ so that the masses and springs hang in a uniform gravitational
field. While we obtain the same eigenfrequencies whether we solve the horizontal problem or
the vertical problem, we find no mention of the golden ratio in the statements of the vertical
problem.

While the problem we consider here is probably not solved that often by undergraduate
and graduate classical mechanics students, they must surely solve one or both of the problems

1 Taylor provides a back-of-the-book answer to his problem 11.5 on page 766. However, he writes the
eigenfrequencies in the form of equation (7) instead of equation (9), and there is no mention of the golden ratio.
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Figure 1. Our problem of interest. Both masses are identical as are both massless springs. The
system oscillates on a horizontal frictionless table. The box on the left represents an immovable
wall.
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Figure 2. A paradigm of coupled oscillation seen in many textbooks. The boxes represent
immovable walls. The problem shown here reduces to our problem of interest for k1 = k2 = k,

k3 = 0, and m1 = m2 = m.

m2 m3

k1 k2

m1

Figure 3. This textbook paradigm represents a model of a triatomic molecule (perhaps CO2,
carbon dioxide, if m1 = m3 and k1 = k2; perhaps HCN, hydrogen cyanide, if one is interested in
modeling an asymmetric triatomic molecule).

shown in figures 2 and 3. Several classical mechanics textbooks [4–11] solve one or both of
the aforementioned problems. If all masses in figures 2 and 3 are identical, as well as all the
massless springs, both systems enjoy reflection symmetry. While the symmetry in the problem
we solve is broken, we find it interesting that a number associated with aesthetic symmetry
appears in the solution.

Section 2 will solve the problem given in figure 1 and section 3 will provide discussion
for why the golden ratio appears in our solution. Section 4 will offer physics instructors some
problem extensions that can be used in the classroom or for homework assignments.

2. Problem solution

The problem at hand is easily solved with either a Newtonian approach or a Lagrangian
approach. We employ Newton’s second law here. If the position of the left mass is x1 and the
position of the right mass is x2, Newton’s second law gives

mẍ1 = −kx1 − k(x1 − x2) (1)

for the left mass and

mẍ2 = −k(x2 − x1) (2)

for the right mass. A dot represents a total time derivative. To solve the above coupled
differential equations, we guess solutions of the form

x1(t) = A1 eiωt (3)



Golden ratio in a coupled-oscillator problem 899

and

x2(t) = A2 eiωt , (4)

where A1 and A2 are complex amplitudes and ω is a frequency to be determined.
Inserting equations (3) and (4) into equations (1) and (2), we find a matrix equation given

by (
−ω2 + 2ω2

0 −ω2
0

−ω2
0 −ω2 + ω2

0

)(
A1

A2

)
=

(
0
0

)
, (5)

where ω2
0 = k/m. Note the asymmetry in the 2 × 2 matrix; namely, a factor of 2 appears in

the top left entry while no such factor appears in the lower right entry. One can easily trace the
origin of that factor of 2 back to the right-hand side of equation (1) where there are two −kx1

terms. Physically, the factor of 2 arises because the left mass feels forces from two springs
while the right mass only feels a force from one spring.

To avoid the trivial solution (i.e. A1 = A2 = 0), the determinant of the 2 × 2 matrix in
equation (5) must vanish. The quadratic equation in ω2 one gets is

(ω2)2 − 3ω2
0(ω

2) +
(
ω2

0

)2 = 0. (6)

The two positive solutions are

ω± = ω0

√
3 ± √

5

2
, (7)

where we label the two eigenfrequencies ω+ and ω−. The eigenfrequencies are simplified by
noting that

3 ±
√

5 = 1
2 (

√
5 ± 1)2, (8)

meaning

ω± = ω0

2
(
√

5 ± 1). (9)

We now use the golden ratio (ϕ = (
√

5 + 1)/2) and its inverse (ϕ−1 = ϕ − 1) to write the
eigenfrequencies in the compact way

ω± = ϕ±1ω0. (10)

Thus, the eigenfrequencies of the problem shown in figure 1 are related to the golden ratio in
a very simple manner.

Going back to equation (5) and finding the relationship between A1 and A2 for each
eigenfrequency allows us to find the normal modes. The (unnormalized) normal modes we
find are

η± = ϕ±1x1 ∓ x2. (11)

By the definition of normal modes, the decoupled differential equations satisfied by η± are

η̈± + ω2
±η± = 0, (12)

where ω± are given by equation (10). Thus, the golden ratio appears in the normal modes,
too. If the normal mode associated with ω± is excited, the amplitude of the left mass is ∓ϕ±1

times the amplitude of the right mass.



900 C M Moorman and J E Goff

y z

Figure 4. The golden section requires (y + z)/y = y/z = ϕ.

3. Discussion

To understand how the golden ratio enters into our problem, factor equation (6) as(
ω2 − ω0ω − ω2

0

)(
ω2 + ω0ω − ω2

0

) = 0. (13)

One of the two factors in the above equation must vanish. Setting the left factor to zero and
solving for the positive root gives ω+ from equation (9). If one instead looks for the positive
root by equating the right factor to zero, one gets ω− from equation (9).

Factoring equation (6) is where we make the connection with the golden ratio.
Figure 4 shows the so-called golden section. What makes the section golden is that the
ratio of y + z to y is the same as the ratio of y to z. That ratio is defined as the golden ratio.
Mathematically,

y + z

y
= y

z
= ϕ. (14)

Setting up the quadratic equation for y gives

y2 − zy − z2 = 0. (15)

The above equation’s positive root is ϕz. Note that the form of the above equation is exactly
the same as the left factor in equation (13). Had we wished to solve equation (14) as a quadratic
equation for z, we would have obtained

z2 + yz − y2 = 0. (16)

In other words, we obtain the exact same form as that of the right factor in equation (13). The
above equation’s positive root is ϕ−1y.

Thus, the golden ratio enters our physical problem because the quadratic equation that
one must solve to find the eigenfrequencies is exactly the same as the quadratic equation one
must solve to obtain the golden ratio from the golden section. We thus see the golden ratio in
our mechanical system of interest.

4. Classroom extensions

The first exercise an instructor might give a class is to derive equation (10). This is a standard
undergraduate exercise in which a student makes use of ideas from linear algebra. A second
exercise is to derive equation (11), or at least verify that after solving equation (11) for x1 and
x2 in terms of η+ and η− and plugging back into equations (1) and (2) that equation (12) is the
result. This last exercise is very straightforward, but it requires students to use an interesting
property of the golden ratio, namely ϕ−1 = ϕ − 1.

If an instructor is looking for ways to incorporate computational techniques into a classical
mechanics course, he or she could have students use symbolic software packages such as
Mathematica, MATLAB and JMathLib and their linear algebra tools to derive the normalized
normal modes, i.e. the normalized version of equation (11).2 A simpler computational exercise
is to impose initial conditions on the system and ask students to plot x1(t) and x2(t) versus

2 Follow the procedure given in, for example, the text [8] by Thornton and Marion. See pp 475–85.
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Figure 5. Equations (18) and (19) are plotted against the dimensionless time variable t̃ = ω0t .
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Figure 6. A challenge problem. Shown above are N identical masses on N identical massless
springs.

time. For example, if the right mass in figure 1 is displaced to the right a distance x0 from its
equilibrium position while the left mass is held in its equilibrium position, the initial conditions
that must be imposed are

x1(0) = 0, x2(0) = x0, ẋ1(0) = 0, and ẋ2(0) = 0. (17)

Students should then be able to derive the positions as functions of time to be

x̃1(t̃) = 1

2ϕ − 1
[cos(ϕ−1 t̃ ) − cos(ϕt̃)] (18)

and

x̃2(t̃) = 1

2ϕ − 1
[ϕ cos(ϕ−1 t̃ ) + ϕ−1 cos(ϕt̃)]. (19)

Here, we use dimensionless variables such that x̃1 = x1/x0, x̃2 = x2/x0 and t̃ = ω0t . Note also
that (2ϕ − 1) is just a fancy way of writing

√
5. Students can then plot the above equations

and get what we show in figure 5. Note that there is never a complete transfer of energy
from one mass to the other; i.e., one mass is never completely motionless at its equilibrium
position.

Finally, a more challenging student exercise is to consider the problem illustrated in
figure 6. That figure shows N identical masses and N identical massless springs. That system
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has a set of N eigenfrequencies {ωj }Nj=1. Once students determine the N eigenfrequencies,
they can show that

N∏
j=1

ω̃j = 1, (20)

where ω̃j = ωj/ω0. Students can check their results for the N = 2 case we examined in this
paper3. Note from equation (10) that ω+ω− = ω2

0.
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