
Model of the 2003 Tour de France
Benjamin Lee Hannas and John Eric Goffa)

School of Sciences, Lynchburg College, Lynchburg, Virginia 24501

~Received 31 July 2003; accepted 17 October 2003!

We modeled the 2003 Tour de France bicycle race using stage profile data for which elevations at
various points in each stage are known. Each stage is modeled as a series of inclined planes. We
accounted for the forces on a bicycle-rider combination such as aerodynamic drag and rolling
resistance and calculated the winning stage times for an assumed set of bicycle and rider parameters.
The calculated total race time differed from the sum of all actual winning stage times by only
0.03%. © 2004 American Association of Physics Teachers.

@DOI: 10.1119/1.1632491#
os
W
h

f
d

n
ow
ra
r
t

na
d
th
p

th
ou
s
th

y-

i
u

n
km
th
f
in
o
a
ca
n
th
el

e
a
a

er
-

s
nd.
to
l to
ear

g

ical
as-

e
–

it to
ged
hill

g
ce

nt
hill

hill.

sh-
ing
o

I. INTRODUCTION

Over the years, several excellent articles1–11 have applied
physics to the study of bicycles. The work described in th
articles is particularly suited for undergraduate projects.
wish to contribute to this body of work with our study whic
grew out of an undergraduate~BLH! project in a computa-
tional physics course. We were motivated by some ideas
modeling a bicycle in motion given in Ref. 12, and we mo
eled the 2003 Tour de France.

At the time of this writing, Lance Armstrong had just wo
his record-tying fifth straight Tour de France by the narr
margin of 61 seconds. We modeled each stage of the
with the goal of predicting the winning time. Accounting fo
aerodynamic drag and rolling resistance, we determined
various stage times by using a simple two-dimensio
model of the course terrain. Our goal was to select mo
parameters that were motivated by the literature and
course terrain and to avoid having to adjust the various
rameters at the race’s conclusion.

This paper is organized as follows. Section II discusses
models used to analyze the finishing times of the 2003 T
de France. Section III presents the computational result
the terrain model, and Sec. IV discusses the results of
bicycle model.

II. MODEL DESCRIPTION

The motivation for our model came after examining d
namic profiles of the 2003 Tour de France.13 Figure 1 shows
a typical profile, that of stage 15. The distances shown
kilometers refer to the actual distances the cyclists m
travel, despite the fact that these distances are shown o
horizontal.14 These distances are given to the nearest 0.5
The elevations above sea level at various points along
way are given in meters. Although the actual geometry o
Tour de France stage is three-dimensional with wind
turns, we modeled the stage by using only the tw
dimensional slice given in Fig. 1. A knowledge of the elev
tions at the points specified on Fig. 1 means that we
make only a very rough model of a stage’s true profile, a
we modeled a stage by using a linear approximation of
terrain between the known elevations. Thus, our mod
stage profile looks like a series of inclined planes~see Fig.
2!.

For a given inclined plane, we modeled the bicycle-rid
combination of total massm as one object subjected to
number of forces. The free-body diagram and our coordin
575 Am. J. Phys.72 ~5!, May 2004 http://aapt.org/ajp
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system is shown in Fig. 3. The weight of the bicycle-rid
combination ismgW , wheregW is the acceleration due to grav

ity. The normal force,FW N , is the component of the ground’
force on the bicycle-rider that is perpendicular to the grou

We also included two frictional forces. The first is due
aerodynamic drag, which we assumed to be proportiona
the square of the cyclist’s speed; we neglected the lin
drag. Specifically,

FD5 1
2CDrAv2, ~1!

is the drag force,15,16 where CD is the dimensionless dra
coefficient, r is the air density,A is the frontal cross-
sectional area of the bicycle-rider combination, andv is the
speed. In general,CD depends onv because it is merely a
measure of how the drag force varies from the dynam
pressure multiplied by the cross-sectional area, but we
sume thatCD is a constant, although it will vary during th
course of a race.CD has typical values in the range of 0.8
0.9 for a racing cyclist.17 The cross-sectional area,A, is an-
other parameter that changes during a race. We assumed
be constant for a given racing position, though we chan
its value depending on whether the cyclist was going up
or downhill. ~See Sec. III for the values we used.!

We also modeled the frictional force due to rollin
resistance.18 We considered only a constant rolling resistan
force and neglected any terms proportional tov or higher
powers ofv. The form we used is

Fr5m rFN , ~2!

wherem r is the coefficient of rolling friction andFN is the
magnitude of the normal force. This force will be importa
at low speeds, like those encountered during steep up
ascents; however, it will be small compared toFD at high
speeds, like those reached when cycling down a steep
Typical values ofm r are around 0.003 for a racing bike.19

Finally we considered the forward parallel force,FW b , on
the bicycle-rider due to the reaction of the bike’s tires pu
ing back on the road. We modeled this force by estimat
the amount of power,Pb , that the rider puts into the bike s
that Fb is

Fb5Pb /v. ~3!

Because Eq.~3! diverges for smallv ~due to the incorrect
assumption that the power remains constant!, we corrected
Eq. ~3! by replacingv with 6 m/s if v,6 m/s. This correc-
575© 2004 American Association of Physics Teachers
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tion was suggested in Ref. 12. We note that Giordano12 used
7 m/s, but we estimated that a Tour de France cyclist wo
be able to maintain a slightly larger force.

In Fig. 3 we represent all of the resistive forces asFW R . We
have,

FW R5FW D1FW r . ~4!

Unlike the usual introductory physics approach, we ch
not to rotate the coordinate system withx along the plane
andy normal to the plane so that we needed only to cha
u when moving from one inclined-plane segment of a sta
to the next. The magnitude of the normal force isFN

5mgcosu. Newton’s second law for the cyclist’s acceler
tion gives

v̇x5 ẍ5S Fb

m
2

FR

m
2g sinu D cosu, ~5a!

v̇y5 ÿ5S Fb

m
2

FR

m
2g sinu D sinu. ~5b!

A dot represents differentiation with respect to time andvx

andvy are thex andy components, respectively, of the c
clist’s velocity. We need now only insert Eqs.~1! and~2! into
Eq. ~4! and then substitute this result with Eq.~3! into Eq.
~5!.

Fig. 1. Dynamic profile of stage 15 of the 2003 Tour de France~Ref. 13!.

Fig. 2. Our model of stage 15 of the 2003 Tour de France.
576 Am. J. Phys., Vol. 72, No. 5, May 2004
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III. RESULTS

To obtain a predicted time for each stage of the race,
must numerically solve Eq.~5! for a given stage profile.
Thus, the angleu above~or below! the elevation for each
triangular segment is needed. Starting at zero velocity,
cyclist enters the first segment. What gets the cyclist initia
moving is obviously the mechanical power put into the s
tem by the rider. Adding up the time for each inclined part
the stage profile will then give the total time for the stage

The input parameters have a range of values that fit m
cyclists at the Tour de France. We used as many publis
values as we could find and averaged the range when
range of a particular parameter was sufficiently large. O
such parameter is the mass13 and we estimated a mass of 6
kg for the rider and 8 kg for the bicycle, thus givingm
577 kg for the bicycle-rider combination. The values ofCD

andA vary from rider to rider; we estimated two values f
the productCDA, depending on whether the cyclist is ridin
downhill in a more crouched position or riding uphill in
more upright stance. From the work of Refs. 17, 20, and
we choseCDA50.25 m2 for downhill and CDA50.35 m2

for uphill. We took the air density to ber51.2 kg/m3 and
the coefficient of rolling friction to bem r50.003 ~see, for
example, the work of Ref. 19!.

Choosing the biker’s power output is another parame
that can be estimated. We assumed that the cyclist out
more energy pedaling uphill than riding downhill. In fac
video footage of this year’s Tour de France showed many
the riders coasting on stretches of some of the steep desc
Overcoming the gravitational force on the uphill segme
requires most of the rider’s energy output. To account for t
difference in power output, we examined all of the angles
all of the stages and looked for regions of separation. T
steepest climb was aroundu.0.097 rad found in a 2 km
stretch near the end of stage 13 while steep descents
peared belowu520.055 rad. Given these angular division
we arrived at the following estimate for the power output

Pb5H 200 W ~u<20.055!

375 W ~20.055<u,0.09!

500 W ~0.09<u!

, ~6!

Fig. 3. Free-body diagram of the bicycle-rider combination~represented by
the rectangle!. Note the coordinate system we used in the lower left. A

note thatFW R is the sum of the aerodynamic drag force and the rolli
friction force.
576B. L. Hannas and J. E. Goff
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Table I. Numerical results. The difference column is the difference between columns 3 and 2. The % diff
is @(column 32column 2)/(column 2)#3100%. The actual winning times are taken from Ref. 13.

Stage Actual winning time Predicted time Difference % Difference

0 0 h 078 269 0 h 088 599 018 339 20.85
1 3 h 448 339 3 h 438 579 2008 369 20.27
2 5 h 068 339 4 h 358 519 2308 429 210.01
3 3 h 278 399 3 h 478 029 198 239 9.33
4 1 h 188 279 1 h 298 429 118 159 14.34
5 4 h 098 479 4 h 298 419 198 549 7.97
6 5 h 088 359 5 h 048 359 2048 009 21.30
7 6 h 068 039 5 h 438 229 2228 419 26.20
8 5 h 578 309 6 h 158 289 178 589 5.03
9 5 h 028 009 4 h 448 589 2178 029 25.64
10 5 h 098 339 4 h 418 299 2288 049 29.07
11 3 h 298 339 3 h 338 129 038 399 1.74
12 0 h 588 329 1 h 068 239 078 519 13.41
13 5 h 168 089 5 h 268 079 098 599 3.16
14 5 h 318 529 5 h 238 219 2088 319 22.57
15 4 h 298 269 4 h 308 389 018 129 0.45
16 4 h 598 419 4 h 538 219 2068 209 22.11
17 3 h 548 239 3 h 598 459 058 229 2.29
18 4 h 038 189 4 h 358 349 328 169 13.26
19 0 h 548 059 1 h 048 179 108 129 18.86
20 3 h 388 499 3 h 148 559 2238 549 210.92

Total 82 h 338 539 82 h 328 379 2018 169 20.03
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where the last entry is used only on the aforementioned 2
stretch of stage 13. We chose that number based on fin
the minimum power needed to reach the top of the inclin
segment.22 The other power numbers are consistent w
those found in the literature.9,21,23,24We originally used 400
W for the intermediate angular range, but changed it to 3
W about midway through the actual race because it see
as if we were overestimating the power input on the more
terrain. This was our only parameter change during
course of the actual race. We note that there are a total of
angles given on the Tour de France web site13 for the entire
3427.5 km race. There were 15 angles (.3.74% of total! for
which u<20.055 rad. The distance which these 15 ang
covered was 124.5 km (.3.63% of the total distance!. Most
of the race~3301 km! had 385 angles in the middle range

Our numerical technique employed the Euler method~see,
for example, Ref. 25!; nothing more sophisticated is nece
sary. We found an unchanging stage time when using a t
step size ofDt50.5 s. Table I displays our main results.

We stress that the times we computed for Table I w
found by starting the biker off at zero velocity and then ru
ning our code to the end of a stage. There will obviously
changes in the cyclist’s speed as the angle changes an
biker moves from one inclined plane to another. Figure
shows a plot of the biker’s speed versus distance traveled
stage 15. Note that while the biker’s speed changes cont
ously from one inclined plane to the next, the biker’s spe
reaches a constant rather quickly for a given inclined pla
This constant is just the terminal speed. For stage 15,
found a maximum speed on a downhill of about 20.9 m
~46.7 mph!. Thus, a faster method of getting an estimate
the time to complete a stage is to determine the term
speed for a given inclined plane and then assume that
speed is the biker’s speed for the entire inclined plane. T
is, just solve for the biker’s speed in Eq.~5! for ẍ5 ÿ50.
This approximation takes about 10–20 s off the more ac
hys., Vol. 72, No. 5, May 2004
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rately determined stage times, unless there were particu
steep mountains. In that case, the biker approaches a s
mountain at a speed greater than the terminal speed
hence the average speed for that inclined plane is gre
than the terminal speed. Stages 7–9 and 13–16 gave slig
longer times (,1 min) when using just the terminal spee
for each inclined plane in comparison with the full calcul
tion.

IV. DISCUSSION

As stressed in Sec. I, we intended to model the 2003 T
de France with a given set of parameters and to see
closely we could predict each stage’s winning time. We d
not want to continually adjust all the model parameters a
each stage was completed just to get a few minutes close

Fig. 4. Our model’s prediction of the rider’s speed versus distance biked
stage 15 of the 2003 Tour de France.
577B. L. Hannas and J. E. Goff



u
an
w
ou
ou
th
io
.
dr
th
e

al

ef
i

e
d
e
a

in
w
o
W

a

st
s

ad
o

ed
ns
il
ce

s
as
a

r

e-
er
lls

a
on
u

a
ld
c-
u

h
a
,
ic
b
’s

ld
ha
in

sity
s

the
so-
ver,
till
d

l

ac-
as

uite
ot
se

ody-
on

to
if

by
ller
om-
lue
o
ich

to
ver,
ad-
the
t of

ts.
s of
s, a
for
that
ce
we

sled
be
of

d in

of a

ot

J.

as-

by

ect-
the winning time. Of the 21 stages we modeled, 9 of o
predictions came in faster than the actual winning times
12 came in slower. With an overall discrepancy of 0.03%,
believe our model was quite successful. The fact that
discrepancy is so low is probably due as much to a fortuit
cancellation of individual stage discrepancies, for which
discrepancies were never as low as 0.03%, as to a judic
choice of model parameters at the beginning of the race
fact, adding each of our twenty-one stage errors in qua
ture gives an overall relative error of 1.54%. Note that
total actual winning time given in Table I is the sum of all th
stage-winning times. It is not Lance Armstrong’s over
winning time, which was 83 h 418129.13 We were 1 h 88359
faster than Armstrong’s time, or about 1.37% off. From R
13 we found a mass for Lance Armstrong of 75 kg, which
8 kg more than what we used.

Our worst results were for the short time trials. The tim
we computed for stages 0, 4, 12, and 19 were all slow an
the 13%–21% error range. We used a power of 375 W
clusively for these flat stages. We believe that our power w
too small; that is, the actual cyclists were likely generat
larger power outputs over the short courses. Large po
outputs are not likely sustained for the longer stages. A m
sophisticated model would use a power larger than 375
for the time trials.

Interpreting the effects of altering the model’s other p
rameters is straightforward. For example, increasingCD , A,
r, and m r would increase the resistive drag on the cycli
Hence, an increase of any of those parameters would re
in longer stage times.

Changing the mass of the bicycle-rider combination le
to more subtle effects. An increased mass means that m
power must be exerted by the rider to keep climbing spe
the same. However, an increased mass typically mea
rider can exert more power, which could improve downh
times. See Ref. 20 for a study on how body size influen
uphill and downhill biking.

Of all the parameters (Pb , m, CD , A, r, and m r), we
found that the stage times were most sensitive to change
the rider’s power output. For example, we found that incre
ing the power output by 5% gave a time for stage 15 that w
about 14 min faster~5% faster!, while decreasing the powe
by 5% slowed the estimated time by about 35 min~13%
slower!. Clearly, the biker suffers on steep climbs if we r
duce the power. However, we note that our model is not v
sensitive to our choice of 200 W for the steep downhi
Obviously, the biker’s speed is largest on those downhills
is the drag force. Very little is gained by adding power
steep downhills because the drag force scales with the sq
of the speed.

We should also mention that our study did not model
individual cyclist in the 2003 Tour de France. If one wou
like to use our model for a particular cyclist, we would re
ommend doing a power analysis of that rider for vario
types of hills and straightaways so as to replace Eq.~6! with
a more individualized power breakdown. Also, photograp
could be taken to deduce a biker’s cross-sectional are
various biking positions. The coefficient of rolling friction
m r , for a particular tire could be measured in a basic phys
lab.9 One could even model the effect of rolling resistance
including another term that is proportional to the bike
speed.17 CD is much more difficult to estimate and cou
only be accurately known through experimental tests t
examine the cyclist’s resistive forces. Of course, survey
578 Am. J. Phys., Vol. 72, No. 5, May 2004
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the land for a particular race course and making air den
measurements would improve the estimates of the variouus
andr, respectively.

All of these suggestions for improving the estimates of
model’s parameters would make our model much more
phisticated. There are other levels of sophistication, howe
that could be incorporated into our model that would s
leave it relatively simple. For example, the effect of win
could be included by simply changingv2 in Eq. ~1! to (v
2vw)2, where the wind velocity,vw , is taken to be paralle
to the ground withvw.0 for a tailwind andvw,0 for a
headwind. For a race as long as the Tour de France, an
curate inclusion of wind would be quite challenging,
would obtaining more accurate values forA, CD , andr.

Lastly, there are aspects to actual racing that are q
difficult to include in our model. For example, we have n
included drafting. Drafting occurs when one racer rides clo
behind another racer so as to reduce the amount of aer
namic drag. Energy savings for a rider in a drafting positi
can be as high as almost 40%.26 Although drafting is not so
important on steep uphill climbs, we expect our model
predict rather different times for steep downhill descents
we were to include drafting. One could model drafting
using, for example, an effective area that would be sma
than the actual cross-sectional area of the bicycle-rider c
bination. Or, one could reduce the drag coefficient to a va
appropriate for drafting. We also would find it difficult t
model the various food and restroom breaks, both of wh
can take place while the biker is in motion.

We could spend more time adjusting the parameters
more closely approach the winning stage times; howe
there are too many approximations to believe that the
justed parameters would reflect reality any better than
ones we have used to produce Table I. With the amoun
readily available online information,13 there are countless
possibilities available to instructors for student projec
Whether the course is computational physics, the physic
sports, classical mechanics, or even introductory physic
model such as the one we used in this work is well suited
an undergraduate physics student. Any sporting event
has profile data available, including future Tour de Fran
races, can be studied using a model similar to the one
used here. Long-distance automotive races and dog-
races are examples of less traditional sports that could
studied with our model; all one needs is a good estimate
the various parameters and profile data that could be use
a series of inclined-plane motions.
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