Model of the 2003 Tour de France
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We modeled the 2003 Tour de France bicycle race using stage profile data for which elevations at
various points in each stage are known. Each stage is modeled as a series of inclined planes. We
accounted for the forces on a bicycle-rider combination such as aerodynamic drag and rolling
resistance and calculated the winning stage times for an assumed set of bicycle and rider parameters.
The calculated total race time differed from the sum of all actual winning stage times by only
0.03%. © 2004 American Association of Physics Teachers.
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I. INTRODUCTION system is shown in Fig. 3. The weight of the bicycle-rider

. . combination ismg, whereg is the acceleration due to grav-

Over the years, several excellent arti¢i@Shave applied . N ,
physics to the study of bicycles. The work described in thosdY- The normal forceFy, is the component of the ground's
articles is particularly suited for undergraduate projects. Wdorce on the bicycle-rider that is perpendicular to the ground.
wish to contribute to this body of work with our study which We also |_ncluded two frictional forces. The first is (_1ue to
grew out of an undergraduatBLH) project in a computa- aerodynamic drag, whl_ch’we assumed to be proport|or!al to
tional physics course. We were motivated by some ideas foif'e square of the cyclist's speed; we neglected the linear
modeling a bicycle in motion given in Ref. 12, and we mod-drag. Specifically,
eled the 2003 Tour de France. Fp=1CppAv? 1)

At the time of this writing, Lance Armstrong had just won b 2-b '
his record-tying fifth straight Tour de France by the narrowis the drag forcé>!® where C is the dimensionless drag
margin of 61 seconds. We modeled each stage of the raggefficient, p is the air density,A is the frontal cross-

with the goal of predicting the winning time. Accounting for sectional area of the bicycle-rider combination, anis the
aerodynamic drag and rolling resistance, we determined th§’peed. In generall, depends onv because it is merely a
various stage times by using a simple two-dimensional,aaqre of how the drag force varies from the dynamical

model c:f thethcc;urse terraitr_l. (t)udr %oalthwa?tto fdeCt rzo‘tjﬁgressure multiplied by the cross-sectional area, but we as-
parameters that were motivated by the literature an ume thatCp, is a constant, although it will vary during the

course terrain and to avoid having to adjust the various P& irse of a raceC,, has typical values in the range of 0.8—

rameters at the race’s conclusion. 9f . list’ Th tional areA. i
This paper is organized as follows. Section Il discusses th8-9 for a racing cyclist: The cross-sectional area, is an-

ypther parameter that changes during a race. We assumed it to

models used to analyze the finishing times of the 2003 TO£ X ; 2
de France. Section il presents the computational results g€ constant for a given racing position, though we changed

the terrain model, and Sec. IV discusses the results of thS value depending on whether the cyclist was going uphill
bicycle model. or downhill. (See Sec. Il for the values we usgd.

We also modeled the frictional force due to rolling
resistancé® We considered only a constant rolling resistance
[I. MODEL DESCRIPTION force and neglected any terms proportionalvtar higher

The motivation for our model came after examining dy- powers ofy. The form we used is

namic profiles of the 2003 Tour de Franderigure 1 shows Fr=uFn, 2)

a typical profile, that of stage 15. The distances shown in

kilometers refer to the actual distances the cyclists mustvhere u, is the coefficient of rolling friction andry is the
travel, despite the fact that these distances are shown on tineagnitude of the normal force. This force will be important
horizontal'* These distances are given to the nearest 0.5 kmmat low speeds, like those encountered during steep uphill
The elevations above sea level at various points along thascents; however, it will be small comparedRg at high
way are given in meters. Although the actual geometry of aspeeds, like those reached when cycling down a steep hill.
Tour de France stage is three-dimensional with windingTypical values ofu, are around 0.003 for a racing bik.

qurns, we Im?deleq the ;tagi At\)yk usiln% onl}/tk;[he ltWO' Finally we considered the forward parallel fordg,, on
Imensional slice given In Fig. 1. A knowledge of In€ eleva-, , bicycle-rider due to the reaction of the bike’s tires push-

tions at the points specified on Fig. 1 means that we ca g back on the road. We modeled this force by estimating
make only a very rough model of a stage's true profile, an he amount of owerP. that the rider puts into the bike so
we modeled a stage by using a linear approximation of thghatF i P L P

b

terrain between the known elevations. Thus, our model’
stage profile looks like a series of inclined plarisse Fig. Fo=P,/v. 3)
2).

For a given inclined plane, we modeled the bicycle-riderBecause Eq(3) diverges for smalb (due to the incorrect
combination of total massn as one object subjected to a assumption that the power remains congtawe corrected
number of forces. The free-body diagram and our coordinat&g. (3) by replacingv with 6 m/s if v <6 m/s. This correc-
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Fig. 1. Dynamic profile of stage 15 of the 2003 Tour de Frafief. 13.

0 m§ ]

. . . Fig. 3. Free-body diagram of the bicycle-rider combinatimpresented by
tion was SqueSted in Ref. 12. We note that Glord%meed the rectangle Note the coordinate system we used in the lower left. Also

7 m/s, but we estimated that a Tour de France cyclist would ;. 1otf s the sum of the aerodynamic drag force and the rolling

be able to maintain a slightly larger force. friction force.
In Fig. 3 we represent all of the resistive forcesl%@ We
have,
Ill. RESULTS
FR: FD+ FI‘ . (4)

To obtain a predicted time for each stage of the race, we

Unlike the usual introductory physics approach, we chosénust numerically solve Eq(5) for a given stage profile.
not to rotate the coordinate system withalong the plane hus, the angley above (or below the elevation for each
andy normal to the plane so that we needed only to changér""m.gular segment is needed. Starting at zero V?'O?'FV.' the
6 when moving from one inclined-plane segment of a stag&YClist enters the first segment. What gets the cyclist initially
to the next. The magnitude of the normal force Fs moving is obviously the mechanical power put into the sys-

= . law for th list’ | tem by the rider. Adding up the time for each inclined part of
=mgcosd. Newton's second law for the cyclist's accelera- yhq stage profile will then give the total time for the stage.

tion gives The input parameters have a range of values that fit many
E.E cyclists at the Tour de France. We used as many published

= %= b _R_gsing)cosg, (59) Vvalues as we could find and averaged the range when the

m range of a particular parameter was sufficiently large. One

such parameter is the ma$and we estimated a mass of 69
(5b) kg for the rider and 8 kg for the bicycle, thus giving
=77 kg for the bicycle-rider combination. The valuesQy
) o ] ) andA vary from rider to rider; we estimated two values for
A dot represents differentiation with respec_t to time and 10 produciCpA, depending on whether the cyclist is riding
ando, are thex andy components, respectively, of the cy- gownhill in a more crouched position or riding uphill in a
clist's velocity. We need now only insert Eqd) and(2) into more upright stance. From the work of Refs. 17, 20, and 21,
Eqg. (4) and then substitute this result with E@) into Eq. e choseCpA=0.25 n? for downhill and CoA=0.35 n?
(5)- for uphill. We took the air density to bp=1.2 kg/n? and
the coefficient of rolling friction to beu,=0.003 (see, for
example, the work of Ref. 19
2500 . , . , , , Choosing the biker’'s power output is another parameter
that can be estimated. We assumed that the cyclist outputs
more energy pedaling uphill than riding downhill. In fact,
video footage of this year’s Tour de France showed many of
the riders coasting on stretches of some of the steep descents.
Overcoming the gravitational force on the uphill segments
requires most of the rider’s energy output. To account for this
difference in power output, we examined all of the angles in
all of the stages and looked for regions of separation. The
steepest climb was aroung=0.097 rad foundn a 2 km
stretch near the end of stage 13 while steep descents ap-
peared belowy= —0.055 rad. Given these angular divisions,
we arrived at the following estimate for the power outputs
06 . 1 . | . 1

200 W (#=<=-0.055
50 100 150
Distance Biked (km) P,=1{ 375 W (—0.055<6<0.09, (6)
Fig. 2. Our model of stage 15 of the 2003 Tour de France. 500 W (0.09<0)
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Table I. Numerical results. The difference column is the difference between columns 3 and 2. The % difference
is [ (column 3-column 2)/(column 2)X 100%. The actual winning times are taken from Ref. 13.

Stage Actual winning time Predicted time Difference % Difference
0 0hO07 26" 0h08 59 01 33 20.85
1 3h44 33 3h43 57 —00" 36" -0.27
2 5h 06 33’ 4h35 51 —30 42 —10.01
3 3h27 39 3h47 02 19 23’ 9.33
4 1h18 27 1h29 42 11" 15 14.34
5 4h09 47 4h29 41 19 54’ 7.97
6 5h 08 35’ 5h04 35 —04' 00’ —1.30
7 6h 06 03’ 5h43 22 —22' 41" —6.20
8 5h57 30’ 6h15 28’ 17' 58’ 5.03
9 5h 02 00’ 4h 44 58 -17 02 —5.64
10 5h 09 33’ 4h41 29 —28 04" —9.07
11 3h29 33 3h33 12 03 39’ 1.74
12 0h58 32 1h06 23 07’ 51" 13.41
13 5h 16 08’ 5h 26 07’ 09 59’ 3.16
14 5h 3152 5h 23 21" —08' 31" —2.57
15 4h 29 26 4h30 38 01 12 0.45
16 4h59 41 4h53 21" —06' 20 —-2.11
17 3h5423 3h59 45 05’ 22’ 2.29
18 4h03 18 4h35 34" 32 16" 13.26
19 0h54 05 1ho4 17 10 12 18.86
20 3h 3849 3h14 55 —23 54" —10.92

Total 82h 3353 82h 32 37 —01' 16" —0.03

where the last entry is used only on the aforementioned 2 kmately determined stage times, unless there were particularly
stretch of stage 13. We chose that number based on findinggeep mountains. In that case, the biker approaches a steep
the minimum power needed to reach the top of the inclinednountain at a speed greater than the terminal speed and
segment? The other power numbers are consistent withhence the average speed for that inclined plane is greater
those found in the literature?>>24we originally used 400 than the terminal speed. Stages 7—9 and 13—16 gave slightly
W for the intermediate angular range, but changed it to 37%onger times €1 min) when using just the terminal speed
W about midway through the actual race because it seemef@dr each inclined plane in comparison with the full calcula-
as if we were overestimating the power input on the more flation.

terrain. This was our only parameter change during the

course of the actual race. We note that there are a total of 4Q{, p;scussioN

angles given on the Tour de France webSifer the entire

3427.5 km race. There were 15 angles3.74% of total for As stressed in Sec. |, we intended to model the 2003 Tour
which #<—0.055 rad. The distance which these 15 anglegle France with a given set of parameters and to see how
covered was 124.5 km{3.63% of the total distangeMost ~ closely we could predict each stage’s winning time. We did
of the race(3301 km) had 385 angles in the middle range. not want to continually adjust all the model parameters after

Our numerical technique employed the Euler mettses, each stage was completed just to get a few minutes closer to
for example, Ref. 2B nothing more sophisticated is neces-
sary. We found an unchanging stage time when using a time )
step size ofAt=0.5 s. Table | displays our main results.

We stress that the times we computed for Table | were | 1
found by starting the biker off at zero velocity and then run- | |
ning our code to the end of a stage. There will obviously be [T
changes in the cyclist's speed as the angle changes and tt_
biker moves from one inclined plane to another. Figure 4% 1s|- -
shows a plot of the biker’s speed versus distance traveled fo%
stage 15. Note that while the biker’s speed changes continuj{?
ously from one inclined plane to the next, the biker’'s speedz |- .
reaches a constant rather quickly for a given inclined plane®
This constant is just the terminal speed. For stage 15, we
found a maximum speed on a downhill of about 20.9 m/s 5[ .
(46.7 mph. Thus, a faster method of getting an estimate of [ |
the time to complete a stage is to determine the terminal . | . | . |
speed for a given inclined plane and then assume that the % 50 100 150
speed is the biker’s speed for the entire inclined plane. That Distance Biked (km)

is, _jUSt 30|V? for_ the biker’'s speed in Ep) for x=y=0. Fig. 4. Our model's prediction of the rider’s speed versus distance biked for
This approximation takes about 10—20 s off the more accustage 15 of the 2003 Tour de France.

5 . I : .
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the winning time. Of the 21 stages we modeled, 9 of ourthe land for a particular race course and making air density
predictions came in faster than the actual winning times andneasurements would improve the estimates of the vailsus
12 came in slower. With an overall discrepancy of 0.03%, weand p, respectively.

believe our model was quite successful. The fact that our All of these suggestions for improving the estimates of the
discrepancy is so low is probably due as much to a fortuitousnodel’s parameters would make our model much more so-
cancellation of individual stage discrepancies, for which thephisticated. There are other levels of sophistication, however,
discrepancies were never as low as 0.03%, as to a judiciouhat could be incorporated into our model that would still
choice of model parameters at the beginning of the race. Ifeave it relatively simple. For example, the effect of wind

fact, adding each of our twenty-one stage errors in quadraould be included by simply changing in Eq. (1) to (v
ture gives an overall relative error of 1.54%. Note that the_vw)z where the wind velocityy,, is taken to be parallel

total actual winning time given in Table | is the sum of all the
stage-winning times. It is not Lance Armstrong’s overall
winning time, which was 83 h 412".** We were 1 h 835’

to the ground withv,,>0 for a tailwind andv,,<0 for a
headwind. For a race as long as the Tour de France, an ac-

faster than Armstrong’s time, or about 1.37% off. From Ref.Curate inclggion of wind would be quite challenging, as
13 we found a mass for Lance Armstrong of 75 kg, which isWOUIOI obtaining more accurate values fsy _CD' andp. .

8 kg more than what we used. _L_astly, there are aspects to actual racing that are quite
Our worst results were for the short time trials. The timesdifficult to include in our model. For example, we have not
we computed for stages 0, 4, 12, and 19 were all slow and imclqded drafting. Drafting occurs when one racer rides close
the 13%—21% error range. We used a power of 375 W exPehind another racer so as to reduce the amount of aerody-
clusively for these flat stages. We believe that our power wa§amic drag. Energy savings for a rider in a drafting position

too small; that is, the actual cyclists were likely generatingt@n be as high as almost 40%aAlthough drafting is not so

larger power outputs over the short courses. Large powedfportant on steep uphill climbs, we expect our model to
outputs are not likely sustained for the longer stages. A mor@redict rather different times for steep downhill descents if
sophisticated model would use a power larger than 375 Wve were to include drafting. One could model drafting by
for the time trials. using, for example, an effective area that would be smaller

Interpreting the effects of altering the model's other pa-than the actual cross-sectional area of the bicycle-rider com-
rameters is straightforward. For example, increasipg A, bination. Or, one could reduce the drag coefficient to a value
p, and u, would increase the resistive drag on the cyclist.2ppropriate for drafting. We also would find it difficult to
Hence, an increase of any of those parameters would resuyRodel the various food and restroom breaks, both of which
in longer stage times. can take place while the biker is in motion.

Changing the mass of the bicycle-rider combination leads We could spend more time adjusting the parameters to
to more subtle effects. An increased mass means that morgore closely approach the winning stage times; however,
power must be exerted by the rider to keep climbing speed#iere are too many approximations to believe that the ad-
the same. However, an increased mass typically means jasted parameters would reflect reality any better than the
rider can exert more power, which could improve downhill ones we have used to produce Table I. With the amount of
times. See Ref. 20 for a study on how body size influenceseadily available online informatiol, there are countless
uphill and downhill biking. possibilities available to instructors for student projects.

Of all the parametersR,, m, Cp, A, p, and u,), we  Whether the course is computational physics, the physics of
found that the stage times were most sensitive to changes gports, classical mechanics, or even introductory physics, a
the rider’s power output. For example, we found that increasmodel such as the one we used in this work is well suited for
ing the power output by 5% gave a time for stage 15 that waan undergraduate physics student. Any sporting event that
about 14 min fastet5% fastey, while decreasing the power has profile data available, including future Tour de France
by 5% slowed the estimated time by about 35 Mi3%  races, can be studied using a model similar to the one we
slowey. Clearly, the biker suffers on steep climbs if we re- used here. Long-distance automotive races and dog-sled
duce the power. However, we note that our model is not veryaces are examples of less traditional sports that could be
sensitive to our choice of 200 W for the steep downhills.studied with our model; all one needs is a good estimate of

Obviously, the biker’s speed is largest on those downhills aghe various parameters and profile data that could be used in
is the drag force. Very little is gained by adding power ong series of inclined-plane motions.
steep downhills because the drag force scales with the square
of the speed. ' . dElectronic mail: goff@lynchburg.edu
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